Воздушный клин: Воздушный клин — Большая Энциклопедия Нефти и Газа, статья, страница 3
|Содержание
Этим пользуйся! Здесь все решения Бэшек
46
1. Складываются
две световые волны, одинаково направленные
и имеющие одинаковые периоды и амплитуды
(А0)
колебаний. Определить разность фаз, при
которой результирующая волна имеет ту
же амплитуду А0.
2. Найти
все длины волн видимого света (от 0,76 до
0,38 мкм), которые будут максимально
усилены при оптической разности хода
интерферирующих волн, равной 1,8 мкм.
3. Вывести
формулу для координаты интерференционной
полосы, соответствующей минимуму, в
опыте Юнга. Рассчитать расстояние между
второй и первой темной полосой, если
расстояние от когерентных источников
до экрана 1 м, расстояние между
источниками 0,2 см, а λ = 500 нм.
4. Параллельный
пучок электронов, ускоренный разностью
потенциалов 50 В, падает нормально на
две щели, расстояние между которыми
10 мкм. Определить расстояние между
центральным и первым максимумом
дифракционной картины на экране,
расположенном на расстоянии 0,6 м от
щели.
5. В
опыте Юнга на пути одного луча помещалась
пластинка толщиной d1 = 0,11 см,
а на пути другого – пластинка толщиной
d2 = 0,1 см.
Обе пластинки из стекла (n = 1,5).
На сколько полос смещается интерференционная
картина? Длина волны 500 нм.
6. Два
когерентных источника расположены на
расстоянии 2,5 мм друг от друга. На
экране, расположенном на расстоянии
1 м от источника наблюдается система
интерференционных полос. На какое
расстояние сместятся эти полосы, если
один из источников перекрыть стеклянной
пластинкой (n = 1,5)
толщиной 10 мкм.
7. Определить
толщину плоскопараллельной стеклянной
пластинки (п = 1,55),
при которой в отраженном свете максимум
второго порядка для λ = 0,65 мкм
наблюдается под тем же углом, что и у
дифракционной решетки с постоянной
d = 1 мкм.
8. Монохроматический
свет длины волны λ падает на стеклянный
клин (n = 1,5)
с углом α-4 рад.
В наблюдаемой интерференционной картине
на 1 см приходится 10 световых полос.
Длина волны света равна …. нм.
9. Монохроматический
свет падает нормально на поверхность
воздушного клина, причем расстояние
между интерференционными полосами
Δx1 = 0,4 мм.
Определить расстояние Δx2
между интерференционными полосами,
если пространство между пластинками,
образующими клин, заполнить прозрачной
жидкостью с показателем преломления
n = 1,33.
10. Между
двумя
плоскопараллельными стеклянными
пластинами заключили очень тонкий
воздушный клин. На пластинки нормально
падает свет с длиной волны 500 нм.
Определить угол клина, если в отраженном
свете на протяжении 1 см наблюдается
20 светлых интерференционных полос.
11. На
стеклянный клин (n = 1,5)
падает нормально свет. Определить его
длину волны, если угол клина
и расстояние между соседними
интерференционными максимумами в
отраженном свете 0,2 мм.
12. Монохроматический
свет падает нормально на поверхность
воздушного клина, причем расстояние
между интерференционными полосами
0,4 мм. Определить расстояние между
полосами, если клин заполнить жидкостью
с показателем преломления n = 1,33.
13. На
тонкий стеклянный клин
нормально
к его поверхности падает монохроматический
свет ( = 600 нм).
Определить угол
между поверхностями клина, если расстояние
b
между соседними интерференционными
максимумами в отраженном свете равно
4 мм.
14. Получить
формулу и рассчитать радиус 4-го темного
кольца Ньютона в отраженном свете.
Радиус кривизны линзы 2,2 м, установка
для наблюдения колец Ньютона освещается
светом с длиной волны 495 нм.
16=17=18. Установка
для наблюдения колец Ньютона освещается
монохроматическим светом с длиной волны
= 0,6 мкм,
падающим нормально. Пространство между
линзой и стеклянной пластинкой заполнено
жидкостью. Наблюдение ведется в проходящем
свете. Радиус кривизны линзы R = 4 м.
Определить показатель преломления
жидкости, если радиус второго светлого
кольца r = 1,8 мм.
20. Установка
для наблюдения колец Ньютона освещается
монохроматическим светом, падающим
нормально. При заполнении пространства
между линзой и стеклянной пластинкой
прозрачной жидкостью радиусы темных
колец в отраженном свете уменьшились
в 1,21 раза. Определить показатель
преломления жидкости.
21. На
диафрагму с круглым отверстием радиусом
1,5 мм нормально падает параллельный
пучок света с длиной волны 500 нм. За
диафрагмой на расстоянии 1,5 м от нее
находится экран. Определить число зон
Френеля на отверстии. Что будет в центре
дифракционной картины на экране?
22. При
помощи дифракционной решетки с периодом
0,02 мм получено первое дифракционное
изображение на расстоянии 3,6 см от
центрального максимума и на расстоянии
1,8 м от решетки. Найти длину волны
света.
23. Максимуму
пятого порядка при наблюдении в
монохроматическом свете с
= 0,5 мкм
соответствует угол дифракции 30º.
Определить число штрихов, которое
содержит дифракционная решетка на
каждый миллиметр своей длины.
24. Свет
от водородной лампы падает на дифракционную
решетку с периодом 2,05 мкм. Под углом
30º зарегистрирована некоторая линия
десятого порядка. Определить, какому
переходу электрона в атоме водорода
соответствует эта линия. ().
25. Дифракционная
решетка,
имеющая
500 штрихов на 1 мм, освещается белым
светом, падающим нормально к ее
поверхности. На каком расстоянии от
центрального максимума находится начало
и конец видимого спектра 1-го порядка
(λФ = 380 нм,
λкр = 780 нм)?
Экран расположен на расстоянии 2 м
от решетки. (см).
26. На
дифракционную решетку с периодом d,
равным 0,01 мм, нормально падает свет
с длиной волны 550 нм. За решеткой
расположена линза с фокусным расстоянием
F,
равным 1 м. Определить расстояние
между максимумом третьего порядка и
центральным максимумом.
27. На
дифракционную решетку с периодом 0,01 мм
нормально падает пучок лучей от разрядной
трубки, наполненной атомарным водородом.
Дифракционный максимум 3-го порядка,
наблюдаемый под углом 10º, соответствует
одной из линий серии Бальмера. Определить
квантовое число n,
соответствующее
энергетическому уровню, с которого
совершен переход.
28. Сравнить
наибольшую разрешающую способность
для красной линии кадмия ( = 644 нм)
для двух дифракционных решеток одинаковой
длины ( = 5 мм),
но разных периодов:
d1 = 4 мкм,
d2 = 2 мкм.
29. Какое
фокусное расстояние F
должна иметь линза, проектирующая на
экран спектр, полученный при помощи
дифракционной решетки, чтобы расстояние
между двумя линиями калия
нм
и
нм
в спектре первого порядка было равным
мм?
Постоянная дифракционной решетки
2 мкм.
30. Параллельный
пучок моноэнергетических электронов
направлен нормально на узкую щель
шириной а = 1 мкм.
Определить скорость этих электронов,
если на экране, отстоящем на расстоянии
l = 20 см
от щели, ширина центрального дифракционного
максимума составляет Δx = 48 мкм
32. На
экран с круглым отверстием радиусом
r = 1,2 мм
нормально падает параллельный пучок
монохроматического света с длиной волны
λ = 0,6 мкм. Определить максимальное
расстояние от отверстия на его оси, где
еще можно наблюдать наиболее темное
пятно.
33. Дифракционная
решетка имеет N = 1000 штрихов
и постоянную d = 10 мкм.
Определить: 1) угловую дисперсию для
угла дифракции φ = 30°
в спектре третьего порядка; 2) разрешающую
способность дифракционной решетки в
спектре пятого порядка.
34. Свет
падает нормально поочередно на две
пластинки, изготовленные из одного и
того же вещества, имеющие соответственно
толщины х1 = 5 мм
и х2 = 10 мм.
Определить коэффициент поглощения
этого вещества, если интенсивность
прошедшего света через первую пластинку
составляет 82%, а через вторую – 67%.
35. Пластинка
кварца толщиной d1 = 2 мм,
вырезанная перпендикулярно оптической
оси кристалла, поворачивает плоскость
поляризации монохроматического света
определенной длины волны на угол
φ1 = 30°.
Определить толщину d2
кварцевой пластинки, помещенной между
параллельными николями, чтобы данный
монохроматический свет гасился полностью.
36. Плоскополяризованный
монохроматический свет, прошедший через
поляроид, оказывается полностью
погашенным. Если же на пути света
поместить кварцевую пластинку, то
интенсивность прошедшего через поляроид
света уменьшается в 3 раза (по сравнению
с интенсивностью света, падающего на
поляроид). Принимая удельное вращение
в кварце α = 0,52 рад/мм
и пренебрегая потерями света, определить
минимальную толщину кварцевой пластинки.
37. На
пути частично поляризованного света,
степень поляризации которого 0,6, поставили
анализатор так, что интенсивность света,
прошедшего через него, стала максимальной.
Во сколько раз уменьшится интенсивность
света, если плоскость пропускания
анализатора повернуть на угол
.
38=41=47. По
пластинке длиной 3 см и шириной 1 см
проходит электрический ток при напряжении
2 В. После установления теплового
равновесия температура пластинки
составила 1050 К. Определить силу тока,
если коэффициент поглощения пластинки.
а = 0,8
().
39. Металлический
шар радиусом 1 см с теплоемкостью
14 Дж/К, нагретый до 1200 К, помещен в
полость с температурой 0 К. Найти
время остывания шара до температуры
1000 К. Шар считать абсолютно черным
телом.
40. Абсолютно
черное тело имеет температуру 2900 K.
В результате остывания тела длина волны,
на которую приходится максимум
спектральной плотности излучательной
способности, изменилась на 9 мкм. В
сколько раз изменилась энергетическая
светимость тела? Постоянная Вина
.
42. Принимая
Солнце за черное тело, и учитывая, что
его максимальной спектральной плотности
энергетической светимости соответствует
длина волны λ = 500 нм,
определить: 1) температуру поверхности
Солнца; 2) энергию, излучаемую Солнцем
в виде электромагнитных волн за 10 мин;
3) массу, теряемую Солнцем за это время
за счет излучения. Радиус Солнца
6,95·107 м.
43. Считая,
что атмосфера поглощает 10% лучистой
энергии, посылаемой Солнцем, найти
мощность, получаемую от Солнца
горизонтальным участком земли площадью
0,5 га. Высота Солнца над горизонтом
равна 30º. Излучение Солнца считать
близким к излучению абсолютно черного
тела с Т = 6000 К.
Радиус Солнца 6,95·107 м,
расстояние от Земли до Солнца 1,5·1011 м.
44. Температура
внутренней поверхности муфельной печи
при открытом отверстии площадью 30 см2
равна 1,3 кК. Принимая, что отверстие
печи излучает как черное тело, определить,
какая часть мощности рассеивается
стенками, если потребляемая печью
мощность составляет 1,5 кВт.
45. В
электрической лампе вольфрамовый
волосок диаметром 0,05 мм накаливается
при работе лампы до Т1 = 2700 К.
Через сколько времени после выключения
тока температура упадет до Т2 = 600 К?
Считать волосок серым телом с коэффициентом
поглощения 0,3. Плотность вольфрама
19300 кг/м3,
удельная теплоемкость 130 Дж/кг·К.
46. Сколько
фотонов падает за 1 мин на 1 см2
поверхности Земли, перпендикулярной
солнечным лучам? Солнечная постоянная
w ≈ 1,4·103 ,
средняя длина волны солнечного света
550 нм.
48. Диаметр
вольфрамовой спирали в электрической
лампочке d = 0,3 мм,
длина спирали
=5 см.
При включении лампочки в сеть напряжением
127 В через лампочку течет ток 0,31 А.
Найти температуру спирали. Считать, что
все выделяющееся в нити тепло теряется
на излучение. Коэффициент поглощения
вольфрама 0,31.
49. Вольфрамовая
нить диаметром d1 =0,1 мм,
соединена последовательно с другой
вольфрамовой нитью. Нити накаливаются
в вакууме электрическим током, причем
первая нить имеет температуру Т1 = 2000 К,
а вторая Т2 = 3000 К.
Каков диаметр второй нити?
50. Работа
выхода электронов из ртути 4,53 эВ.
Возникнет ли фотоэффект, если поверхность
ртути осветить светом с длиной волны
500 нм? Ответ обосновать.
51. На
стеклянный клин (n = 1,5)
нормально падает монохроматический
свет (λ = 698 нм). Определить угол
между поверхностями клина, если расстояние
между двумя соседними интерференционными
минимумами в отраженном свете равно
2 мм.
52. При
освещении металлической пластинки
излучением с длиной волны 360 нм
задерживающий потенциал равен 1,47 В.
Определить красную границу фотоэффекта
для этого металла.
53. При
удвоении частоты падающего на металл
света задерживающее напряжение для
фотоэлектронов увеличивается в 5 раз.
Частота первоначально падающего света
Гц.
Определите длину волны света,
соответствующую красной границе для
этого металла.
54. Фотон
с длиной волны 300 нм вырывает с
поверхности металла электрон, который
описывает в магнитном поле (В = 1 мТл)
окружность радиусом 3 мм. Найти работу
выхода электрона.
55. Определить
постоянную Планка, если известно, что
фотоэлектроны, вырываемые с поверхности
металла светом с частотой 2,8·1015 Гц,
задерживаются напряжением 5,7 В, а
вырываемые светом с частотой 5,2·1015 Гц
– напряжением 15,64 В.
56. На
1 см2
черной поверхности в единицу времени
падает 2,8·1017 квантов
излучения с длиной волны 400 нм. Какое
давление на поверхность создает это
излучение? (мкПа).
57. Свет
от точечного источника, мощность которого
150 Вт, падает нормально на квадратную
зеркальную площадку со стороной 10 см,
расположенную на расстоянии 2 м.
Определить силу давления света на
площадку.
58. Лазерный
пучок мощностью
600 Вт попал в кусочек идеально
отражающей фольги, расположенный
перпендикулярно направлению пучка. При
этом кусочек фольги массой
кг
приобрел скорость 4 см/с. Определить
продолжительность лазерного импульса
(с).
59=61. Определить
давление света на стенки электрической
150-ватной лампочки, принимая, что вся
потребляемая мощность пойдет на
излучение, и стенки лампочки отражают
15% падающего на них света. Считать
лампочку сферическим сосудом радиусом
5 см.
60. Серебряная
пластинка (Авых = 4,7 эВ)
освещается светом с длиной волны 180 нм.
Определить максимальный импульс,
передаваемый поверхности пластины при
вылете каждого электрона.
62. Фотон
с энергией ε = 0,25 МэВ
рассеялся на первоначально покоившемся
свободном электроне. Определить
кинетическую энергию электрона отдачи,
если длина волны рассеянного фотона
изменилась на 20%.
63. Фотон
с энергией 0,3 МэВ рассеялся под углом
θ = 180°
на свободном электроне. Определить долю
энергии фотона, приходящуюся на рассеянный
фотон.
(Λ = 0,0243Ǻ).
64. Фотон
с энергией ε = 0,25 МэВ
рассеялся под углом α = 120°
на первоначально покоившемся свободном
электроне. Определить кинетическую
энергию электрона отдачи. (Λ = 0,0243Ǻ).
65. Какую
скорость
приобретет первоначально покоившийся
атом водорода при испускании фотона,
соответствующего первой линии серии
Бальмера? (.
66. Определить,
на сколько изменились кинетическая и
потенциальная энергии электрона в атоме
водорода при излучении атомом фотона
с длиной волны λ = 4,86·10-7
м.
67. Светом,
какой длины волны необходимо облучать
водород, чтобы при возбуждении атомов
водорода квантами этого света в спектре
излучения наблюдались три спектральные
линии?
68. Основываясь
на том, что первый потенциал возбуждения
атома водорода φ1 = 10,2 В,
определить (в эВ) энергию фотона,
соответствующую второй линии серии
Бальмера.
69. На
дифракционную решетку с периодом 0,01 мм
нормально падает пучок лучей от разрядной
трубки, наполненной атомарным водородом.
Дифракционный максимум 3-го порядка,
наблюдаемый под углом 10º, соответствует
одной из линий серии Лаймана. Определить
квантовое число n,
соответствующее
энергетическому уровню, с которого
совершен переход. R = 1,1·вектор
L-момента
импульса орбитального движения электрона
в атоме с направлением внешнего магнитного
поля. Электрон в атоме находится в
d-состоянии.
70. Антикатод
рентгеновской трубки покрыт молибденом
(Z = 42).
Определить минимальную разность
потенциалов, которую надо приложить к
трубке, чтобы в спектре рентгеновского
излучения появились линии К-серии
молибдена.
71. В
атоме вольфрама электрон перешел с
М-оболочки
на L-оболочку.
Принимая постоянную экранирования
b = 5.63,
определить энергию испущенного фотона.
72. Определить
длину волны коротковолновой границы
сплошного рентгеновского спектра, если
при увеличении напряжения на рентгеновской
трубке в два раза она изменилась на
50 пм.
73. Определить
наименьшую длину волны рентгеновского
излучения, если рентгеновская трубка
работает при напряжении U = 150 кВ.
74. Используя
соотношение неопределенностей, оценить
Emin,
которой может обладать частица массой
m,
находящаяся в бесконечно глубокой
одномерной потенциальной яме шириной
а.
75. Длина
волны
излучаемого атомом фотона составляет
0,6 мкм.
Принимая время жизни возбужденного
состояния
t = 10-8 c,
определить отношение естественной
ширины энергетического уровня, на
который был возбужден атом, к энергии,
излученной атомом.
76=77. Используя
векторную модель атома, определить
наименьший угол
,
который может образовать вектор L
момента импульса орбитального движения
электрона в атоме с направлением внешнего
магнитного поля. Электрон в атоме
находится в f-состоянии.
78. Используя
векторную модель атома, определить
наименьший угол, который может образовать
вектор орбитального момента импульса
электрона в атоме с направлением
магнитного поля. Электроны находятся
в d-состоянии.
79. Электрон
находится в бесконечно глубокой
одномерной потенциальной яме шириной
.
Вычислить вероятность того, что электрон,
находящийся в возбужденном состоянии
(n = 4)
будет обнаружен в левой крайней четверти
ямы.
80. Заряженная
частица, ускоренная разностью потенциалов
U = 200 В,
имеет длину волны де-Бройля = 2,02 пм.
Найти массу частицы, если ее заряд
численно равен заряду электрона.
81. Длина
волны де-Бройля протона, летевшего с
энергией 2 МэВ, увеличилась в 2 раза.
Определить, какую энергию потерял при
этом протон.
82. Пользуясь
теорией Бора, получить выражение для
радиуса орбиты электрона. Рассчитать
радиус ближайшей к ядру орбиты электроны
в атоме водорода.
83. Определить
длину волны де-Бройля электронов, при
соударении с которыми в видимой серии
атома водорода появилась одна линия.
84. Определить
длину волны де-Бройля электронов, при
соударении с которыми в спектре атома
водорода появились только 3 линии.
85. Какова
длина волны де-Бройля электронов, при
соударении с которыми в спектре атомов
водорода наблюдаются три спектральные
линии в серии Бальмера.
Тепловой клин или что? Посоветуйте!
мусор
11 years ago
Ford Focus SE USA 2.0 Split Port 2002 г.в.
Проблема вот в чем. Сегодня при движении скорее всего из-за вышедшей из строя крышки расширительного бочка, из-за большого давления в системе охлаждения. Лопнул патрубок первого контура охлаждения. В результате вся жидкость вытекла. Не из-за глупости, а из-за случае пришлось продолжить движение до СТО. Примерно 2км. При движении появился металлический стук в двигателе. Я подумал что вот «ОНО» конец. Вылетел клапан (болезнь SPI из-за седел). Подумал, если на ходу включу N нитральную и газану то хуже уже не будет. Но не тут то было. Стук исчез. Потом через сотню метров двигатель заглох. Начиная заводиться, чувствовалось что стартеру еле еле удается провернуть. Но заводится. Еду дальше. Так было два раза. До СТО доехал. Т.к. уже позднее время никого нет. Машину оставил.
ВОПРОС: Что могло случиться? Мои варианты: 1) Повело голову; 2) Тепловой клин; 3) Стук гидрокомпенсаторов из-за высокой температуры масла и малой её вязкости. На больше вариантов фантазия не позволяет.
Тепловой клин, повело голову, стук гидрокомпенсаторов. |
FELEKS
1 September 2011
Тепловой клин или что? Посоветуйте!
ДедМазай
1 September 2011
Ну раз можно гадать , предположу 2 пункт, и 3. Только третий отредактирую. Стук гидрокомпенсаторов из за потери давления во вкладышах из за гибели оных от теплового клина..
Константин123
2 September 2011
Либо как Дед мазай говорит, либо поршни из за перегрева начало прихватывать (ИМХО основная версия), на 90проц уверен что поездка до СТО обойдется вам в капремонт мотора
chuvak
2 September 2011
Константин123
100% согласен
FELEKS
3 September 2011
Слава богу клина и того что повело голову удалось избежать.
Поменял патрубок. Залил антифриз. Завелась! Голова не дует! Всё хорошо. Работает ровно, без посторонних шумов. Компрессия в норме. Тяга отличная и т.п. Вот разве что появились небольшие проблемы с электрикой. Видимо залило что то. Машина не глушится))) Вентиляторы охлаждения не работают. Чуть не посидел когда хотел заглушиться, ключ даже вытащил. А она продолжает работать. Вентиляторы не работают и она начинает кипеть. Паника одолела. Скинул клемы с акума, но не тут то было. Потом хватило ума отключить разъем расходомера воздуха. Заглохла слава богу. Так и оставил до завтра. Пусть уже электрик занимается этим.
А лопнул патрубок из-за перегрева. После ремонта (менял морду USA на EUR) забыли прикрутить минус один. Из-за этого не работали вентиляторы и … что ещё. Завтыкал видимо температуру. Закипел и крышка не спустила давление. В результате вот такая вот амба.
paololis
3 September 2011
Feliks как проверить не дует ли голова?
FELEKS
3 September 2011
paololis: |
paololis |
Откручивается крышка расширительного бачка. Надевается контрапцевтив. Заводится. Если надуется сильно. Значит дует. Других способов проверки не знаю.
Константин123
4 September 2011
1
Знач не сильно прихватило, насколько поршни прилипли покажет ток вскрытие но думаю даром это не прошло и задиры остались.
Funken
24 July 2013
1
FELEKS
Так не пойдет. При прогреве мотора — давление в системе увеличится в любом случае. Можно попробовать унюхать выхлоп в расширительном бачке. Или измерить компрессию на горячую.
Malish
12 August 2013
Тема закрыта в связи с потерей актуальности данного вопроса. |
1 person online
to leave a message or Sign up
Popular on website
Автобеседка
Пуско-зарядное устройство. Зарядка АКБ. Диагностика
Автобеседка
Все о моторных маслах. Масло для двигателя
FF2 эксплуатация
Фильтры: салонный, воздушный, масляный
FF2 эксплуатация
Поломки АКПП с двигателем 2.0
Автобеседка
Зимняя эксплуатация автомобиля
FF3 двигатель
Масляный фильтр двигателя
FF3 эл. оборудование
Аккумулятор на FF3 — выбор и замена
FF3 двигатель
Система охлаждения двигателя ФФ3
FF2 эксплуатация
Программы для диагностики и конфигурирования на базе ELM327 (часть 2)
FF2 эксплуатация
Масло для двигателя, одобренное ФМК (ч.4)
FF3 двигатель
Двигатель 1.5L /120 л.с./150 л.с./160 л.с./180 л.с. (EcoBoost)
FF2 эксплуатация
Все о свечах зажигания (ч.2)
FF3 кузов и салон
Проблема с дворниками и механизмом стеклоочистителя
FF2 эксплуатация
Крепление, опоры движка
FF2 эксплуатация
Капитальный ремонт двигателя Durateс НЕ (ч.2)
EAGLE TOOL US Air Wedge: максимальная грузоподъемность 300 фунтов, минимальный размер зазора 3/32 дюйма, максимальный размер зазора 2 дюйма, 7 дюймов в пакете Wd — 48PY50|15730
ОРЕЛ ИНСТРУМЕНТ США
- Предмет #
48PY50 - производитель Модель #
15730
UNSPSC #
27112504
- № страницы каталога
Н/Д
Страна происхождения
Дания.
Страна происхождения может быть изменена.
Пневматический клин EAGLE TOOL WINBAG® использует мощное подъемное давление 220 фунтов и заменяет прокладки и клинья в самых разных областях применения. Используется для выравнивания окон, установки шкафов, установки тяжелых дверей и т. д. Надувная воздушная подушка с ручным управлением изготовлена из армированного волокном материала, что позволяет сэкономить часы на рабочей площадке. Используйте для соединений от 3/32 «до 2». Его эффективный насос позволяет воздуху делать свою работу.
Коснитесь изображения, чтобы увеличить его.
Наведите курсор на изображение, чтобы увеличить его.
ОРЕЛ ИНСТРУМЕНТ США
- Предмет #
48PY50 - производитель Модель #
15730
UNSPSC #
27112504
- № страницы каталога
Н/Д
Страна происхождения
Дания.
Страна происхождения может быть изменена.
Пневматический клин EAGLE TOOL WINBAG® использует мощное подъемное давление 220 фунтов и заменяет прокладки и клинья в самых разных областях применения. Используется для выравнивания окон, установки шкафов, установки тяжелых дверей и т. д. Надувная воздушная подушка с ручным управлением изготовлена из армированного волокном материала, что позволяет сэкономить часы на рабочей площадке. Используйте для соединений от 3/32 «до 2». Его эффективный насос позволяет воздуху делать свою работу.
Клиновой воздушный домкрат насоса
Наведите курсор на фотографию, чтобы увеличить ее
Щелкните для просмотра увеличенных изображений
Будьте первым, кто оставит свой отзыв об этом изделии.
15,99 $
(Без НДС)
Бесплатная доставка при заказе на сумму более 35 долларов.
Бесплатная электронная книга по взлому замков для начинающих
Оригинальный большой воздушный домкрат / клин / мешочный насос LokkoLabs коммерческого класса Профессиональный набор для выравнивания и инструмент для выравнивания. Идеально подходит для раздвигания двух предметов или поднятия тяжелого предмета, чтобы получить легкий доступ. Почему…
Подробнее
Наведите курсор на изображение, чтобы увеличить его
Щелкните для просмотра увеличенных изображений
15,99 $
(Без НДС)
Оставьте отзыв!
Бесплатная электронная книга по взлому замков для начинающих
Оригинальный большой воздушный домкрат / клин / мешочный насос LokkoLabs коммерческого класса Профессиональный набор для выравнивания и инструмент для выравнивания. Идеально подходит для раздвигания двух предметов или поднятия тяжелого предмета, чтобы получить легкий доступ. Почему…
Еще
Оригинальный большой воздушный домкрат / клин / мешочный насос LokkoLabs коммерческого класса Профессиональный набор для выравнивания и инструмент для выравнивания. Идеально подходит для раздвигания двух предметов или поднятия тяжелого предмета, чтобы получить легкий доступ.
Зачем вставлять клин между дверью и коробкой и наполнять его воздухом?
- Наш надувной клин не повредит, не поцарапает и не оставит следов на ваших поверхностях
- На дверях дома — вы можете добраться до машины напрямую и открыть ее.
- На дверях дома — вы можете поднять дверь на определенный уровень, чтобы она подходила одна.
- На двери автомобиля появляется место для вставки инструментов для захвата
- На двери автомобиля — позволяет открывать двери снаружи.
- На окне или двери патио можно разобрать сломанный или неисправный механизм
Зачем вам использовать надувной воздушный домкрат для подъема предметов?
- Надувной воздушный домкрат не царапает и не царапает поверхность в отличие от металлического домкрата
- Поднимайте тяжелые стеклянные шкафы или изделия из стекла с большей осторожностью
- Позволяет самостоятельно поднимать или балансировать тяжелые предметы
ПОДХОДИТ ДЛЯ ЛЮБОГО ИНСТРУМЕНТАЛЬНОГО ЯЩИКА. Отлично подходит для различных работ и приложений, таких как точное выравнивание и выравнивание. Не оставляющая следов прокладка для окон, дверей, шкафов, бытовой техники, систем отопления, вентиляции и кондиционирования, сантехники; Поместите клин между дверной или оконной рамой, чтобы создать зазор, и многое другое!
ЭКОНОМЬТЕ ВРЕМЯ И ДЕНЬГИ — Позволяет одному установщику выполнять работу многих. Наши мешки для прокладок помогут удерживать на месте и выравнивать столешницы, дверные и оконные рамы, шкафы и многое другое!
КОММЕРЧЕСКИЙ ДИЗАЙН — Наши клинья с закругленными углами, жесткими прочными краями, гладкой внешней поверхностью и внутренним элементом жесткости для облегчения вставки разработаны для простоты использования. Быстрый и легкий кнопочный воздушный клапан для точного выравнивания одним пальцем. ПОДХОДИТ к узким зазорам 3/32 дюйма и открывается до ширины 2 1/2 дюйма с помощью одного ручного насоса. Грузоподъемность 300 фунтов для максимальной грузоподъемности.
ЗАЩИЩАЕТ ПОВЕРХНОСТИ — Не повреждает, не оставляет следов и не царапает материал, с которым соприкасается, в отличие от монтировок, деревянных прокладок или других клиньев, используемых для подъема, выравнивания, отвеса, прокладки и выравнивания материала.
ГАРАНТИЯ УДОВЛЕТВОРЕНИЯ КЛИЕНТА: мы хотим, чтобы вы были счастливы! Если вы не можете найти ему применение, дайте нам знать!
Вы также можете купить все три размера по удобной цене за комплект — все клинья для универсального сцеживания.
Только что добавлено в корзину…
Х
Вам нужно всего лишь потратить 35 долларов США, чтобы получить бесплатную доставку в пределах континентальной части США
Подробнее.