Как подключить двигатель к регулятору оборотов: Как подключить регулятор оборотов к электродвигателю от стиральной машины Регулятор оборотов электродвигателя от стиральной машины: особенности и подключение
|Содержание
Подключение двигателя стиральной машинки, реверс, регулятор оборотов
В стиральных машинах чаще всего из строя выходит автоматика, на втором месте подшипники и резинотехнические изделия. Двигатель – самый надежный узел, его используются при изготовлении различных домашних станков. Но для этого надо уметь изменять направление вращения и регулировать скорость.
Что требуется
- Тумблер с двумя группами контактов 220 В 15 А, приобрести его можно на Али Экспресс.
- Регулятор оборотов 400 Вт 220 В 50 Гц, также берите на Али Экспресс.
- Электродвигатель от автоматической стиральной машинки, подойдет почти любой марки.
- Отрезки проводов различного цвета, желательно синего (ноль) и коричневого (фаза).
- Потребуется изолента, для установки мощного радиатора купите новый и тюбик теплопроводящей пасты.
- Для проверки схемы соединения рекомендуется пользоваться обыкновенным тестером или хотя бы индикатором.
Подключение двигателя
Внимательно осмотрите клеммники снятого двигателя. На нем есть шесть выводов: два контакта идут к датчику оборотов (таходатчику) и по два контакта с обмоток ротора и статора.
Тахометр нам не нужен, его не трогаем, надо подключить только двигатель.
Все однофазные двигатели такого типа подключаются одинаково. Выход обмотки статора надо присоединить к входу обмотки ротора. Оставшиеся два конца присоединяются к нулю и фазе. Нет разницы, какая именно обмотка будет первой, а какая второй.
Определите выходы обмоток на разъеме. Пользоваться надо тестером, один контакт постоянно держите на клемме, а второй по очереди прикладывайте к остальным. Если прибор показал короткое замыкание, то две клеммы присоединены к одной обмотке.
В нашем случае к одной обмотке подключен нижний и второй сверху контакты, а ко второй клемма над нижним и третья сверху. Соответственно, нам надо перемычкой соединить второй и третий верхние контакты. Сделайте перемычку и выполните соединение. Для гарантии опять прозвоните, теперь у вас короткое должно показывать между двумя оставшимися клеммами.
К двум оставшимся присоедините напряжение 220 В, если все в норме – двигатель начнет вращаться.
Подключение реверса
Как выше упоминалось, для изменения направления вращения необходимо поменять местами подключения одной из обмоток между собой.
И двигатель начнется вращаться в другую сторону. Проверьте правильность соединения, поменяйте местами провода на клеммнике согласно описанной схеме, включите напряжение. Направление вращения двигателя должно измениться на противоположное.
Контакт, на который подавалась фаза, надо соединить со входом второй обмотки. Напряжение попадает на освободившуюся клемму, положение ноля не меняется. Изменение порядка подключения можно делать щелчками тумблера.
Переверните тумблер вверх ногами, на днище есть обозначения каждого выхода и схема их соединения в левом и правом положении переключателя.
Для облегчения понимания нарисуйте элементарную схему соединения: две обмотки и два контакта переключателя. Средние контакты по очереди присоединяются/отсоединяются к двум боковым. Подключение элементарное.
Одну обмотку соедините с крайним нижним контактом и свяжите ее перемычкой с крайним верхним. Вторую обмотку подключите к средней клемме, пусть таким образом в нашем примере будет присоединена обмотка статора.
Теперь сталось подключить ротор. Один контакт тумблера должен подключаться к выходу обмотки ротора, а второй напрямую к нулевому проводу питания.
Если все понятно, то приступайте к соединению. Сделайте по диагоналям перемычки между крайними клеммами. Один средний вывод тумблера подключается к нулю, а второй ко второй обмотке.
Присоедините все провода и еще раз проверьте правильность схемы. Средние контакты: один к нулю питания, другой к обмотке статора. Второй конец этой обмотки подключается сразу к фазе питания (коричневый провод).
Контакты по диагоналям должны иметь перемычки, провода от них идут на вторую обмотку (ротора). Перед включением обязательно проверьте тестером изменения короткого замыкания при переключении тумблера.
Тщательно заизолируйте контакты, проверьте функциональность двигателя. При переключении направление вращения должно меняться. Категорически запрещается менять направление движения до полной остановки ротора.
Регулятора оборотов, моя доработка
Если вы покупали недорогую китайскую продукцию, то надо обязательно сделать ревизию устройства. Достаньте из корпуса начинку и обратите внимание на симистор. В лучшем случае на нем очень маленький радиатор, не могущий эффективно отводить тепло. В худшем случае вообще ничего нет.
На новом радиаторе нарежьте резьбу М3, отрегулируйте его длину по размерам корпуса. Намажьте поверхность симистора термопастой и закрепите подготовленный радиатор. Соберите регулятор.
Подключите регулятора
Осмотрите устройство. Сзади на корпусе есть планка с разъемами и штекер с клеммами. Каждый контакт подписан.
Найдите на входе ноль, фазу и землю (если у вас в доме есть заземление). К ним подключается питание, в нашем случае ноль и фаза (земли нет).
Теперь следует найти выход ноля и фазы с регулятора. На крышке должна быть подробная схема с указанием назначения каждого выходного провода и его цвета.
На купленном регуляторе желтый – земля, два синих – на датчик тахометра, красный – фаза. Белый и зеленый взаимозаменяемые, но для этого надо менять положение перемычки. В нашем случае задействован зеленый. Определяется соединение прозванием выводов тестером.
Подключите синие провода к таходатчику на клеммнике двигателя. На примере к средней клемме тумблера присоединен ноль (зеленый), а к свободному контакту обмотки фаза (коричневый). Желтые провода на клеммнике присоединены к тахометру. Подайте напряжение на регулятор скорости и проверьте работу двигателя на всех режимах и скоростях.
На корпусе устройства есть специальное отверстие для регулировки режимов вращения переменным резистором. С его помощью меняется шаг изменения оборотов, вращение ротора будет начинаться не рывком, а почти с нуля. Выставьте нужные режимы.
Заключение
Любые электромонтажные работы следует делать в строгом соответствии с ПУЭ. Если вы не можете расшифровать эти три буквы без помощи интернета, то не стоит рисковать своим здоровьем.
Смотрите видео
регулятор оборотов с поддержанием мощности
com/vi/DMilSM—rMg/0.jpg» frameborder=»0″ src=»https://www.youtube.com/embed/DMilSM—rMg?feature=player_embedded»>
Здравствуйте дорогие мои посетители. Хочу сегодня продолжить
тему о коллекторных электродвигателях, а именно как подключить двигатель от
стиральной машины с помощью платы регулирования оборотов с поддержкой мощности.
Как вы, видели, я затрагивал уже эту тему. Снимал по этому поводу видео «Подключение и
регулировка оборотов коллекторного двигателя от стиральной машины-автомат».
Это видео стало очень популярным на моём канале, зрители оставили множество
разных комментариев по этой теме. Также я там выложил источник, где я взял
схему регулятора оборотов с поддержкой мощности коллекторных электродвигателей.
И как мне показалось на тот момент, что человек скачает себе этот файл и
соберет себе такую же схему как у меня, и будет её использовать. Но нет,
оказалось не все так просто как мне этого хотелось, посыпалась, куча вопросов
от людей не только гуманитариев, но и совсем не плохих радиолюбителей. Были
даже предложения о покупке
плат регулирования оборотов.
Что бы сразу ответить на многие вопросы, Вам, мои дорогие
читатели, и появилась эта статья.
Занимаюсь я ремонтом электроинструмента в
частности перемоткой электродвигателей. И во время ремонта качественного
электроинструмента замечал там «Константную электронику», которая при снижении оборотов на
электроинструменте поддерживала мощность электродвигателя. Меня это очень
заинтересовало, начал пробовать различные простые регуляторы оборотов,
регуляторы оборотов с обратной связью по току, в общем, кучу разных штуковин.
Пока не наткнулся на сайт «chipmaker.ru» где пользователь «Bogdan» выложил «схему управления
коллекторным двигателем на TDA1085». Собственно говоря, вот эта ссылка: http://www.chipmaker.ru/files/file/1490/ . После того как Вы перешли, жмем на кнопку «Загрузить»
В следующем окне обратно жмем «Загрузить»
У нас скачивается архив, разархивировав который, видим в нем
несколько файлов (два варианта схем для управления двигателями постоянного и
переменного тока с монтажными платами), нам для двигателя переменного тока
нужны PSD файлы с
пометкой «АС»
Распечатав их
(принципиальная, монтажная и печатная плата), я отнес их своему очень хорошему
товарищу Игорю , который мне спая регулятор оборотов с поддержкой мощности (сам
я, к сожалению, не люблю работу с паяльником). Я испытал регулятор оборотов электроинструмента
на TDA1085 на своей «болгарке». К счастью мой товарищ оказался хорошим
радиолюбителем и нашел некоторые неточности в этих схемах и исправил их.
Я не могу вам сейчас сказать что этот регулятор оборотов
коллекторных электродвигателей панацея, возможно, есть что-то и лучше я не
знаю. Как поведет она себя на высоких или даже средних оборотах, честно сказать
я не знаю( здесь уже
можно посмотреть тест этой платы в разных режимах). Эта схема отлично ведет
себя на низких оборотах, и вот уже целый год
отлично себя показывает на Самодельном лобзиковом станке ,
приводом там служит та самая «болгарка» на которой я испытывал регулятор оборотов.
Если Вы уже собрались делать себе регулятор оборотов,
давайте немного разберем его:
К клеммам «Фаза и Ноль» подключаем напряжение 220 Вольт
(фазировка не влияет на работу схемы), светодиод «HL» служит нам индикатором питания платы
регулятора оборотов, к клеммам « М1» подключаем наш электродвигатель,
«таходатчик» который выдает постоянный ток подключаем к «Х3» а если же у вас он
выдает переменный ток или импульсы, то к «Х2» (Как сделать таходатчик).
К контактам «Х4» можно подключить тумблер (выключатель) который будет отключать
наш двигатель, его ставить не обязательно, можно также отключать двигатель с
помощью регулятора оборотов «R1» который подключается к
контактам «Х1». У Bogdana на этой схеме не был указан конденсатор «С
100µF х25V»
хотя он присутствует на монтажной плате (забыл указать). Также у него в схеме
находится очень мощный симистор «ВТА41 800V» который подходит для управления
мощными коллекторными электродвигателями, а для нас подойдет совсем другой на
10…16 Ампер (по цене будет на много дешевле). Симистор должен обязательно
быть с радиатором (вся эта схема построена для управления этим симистором, который в
свою очередь управляет непосредственно нашим электродвигателем). Ниже симистора
на схеме указаны два мощных сопротивления «R31» и «R33»
рассчитанные на 0,1 Ом и мощностью 5 Ватт каждый. Под каждые электродвигатель
нужно индивидуально настраивать плату регулятора оборотов (как это сделать). Регулируется
схема с помощью подстрочных сопротивлений «R3» и «R21».
Построечный резистор «R3»
регулирует плавность пуска двигателя, а «R21» служит для быстроты реагирования на нагрузку электродвигателя
(в зависимости отнего схема будет реагировать плавно или резко на нагрузку).
Для лучшего удобства
я подготовил Вам список всех деталей, которые применяются в этом регуляторе
оборотов с поддержкой мощности («+» обозначены полярные конденсаторы):
Резисторы | ||
20кОм | Пременное 1шт | |
20кОм | Подстроечное 1шт | R3 |
1,2кОм 0,25-0,125W | 3шт | R4;5;9 |
160кОм 0,25-0,125W | 2шт | R6;8 |
24 Ом 0,25-0,125W | 1шт | R7 |
1м 0,25-0,125W | 1шт | R10 |
120кОм 0,25-0,125W | 1шт | R11 |
47кОм 0,25-0,125W | 1шт | R12 |
470кОм 0,25-0,125W | 1шт | R13 |
220кОм 0,25-0,125W | 1шт | R14 |
51 Ом 0,25-0,125W | 4шт | R15;19;25;30 |
2,2кОм 0,25-0,125W | 2шт | R16;22 |
68кОм 0,25-0,125W | 1шт | R17 |
820 Ом 0,25-0,125W | 1шт | R18 |
2,7кОм 0,25-0,125W | 1шт | R20 |
10кОм | Подстроечное 1шт | R21 |
390кОм 0,25-0,125W | 4шт | R23;24;28;29 |
470 Ом 2W | 1шт | R26 |
270 Ом 2W | 1шт | R27 |
160кОм 2W | 1шт | 32 |
0,1 Ом 5W | 2шт | R31;33 |
100 Ом 5W | 1шт | R34 |
51 Ом 2W | 1шт | 35 |
Конденсаторы | ||
+100µF х25V | 3шт | С1;5;неуказанный |
3шт | C2;8;9 | |
+1µF х16V | 3шт | С3;4;7 |
820р | 1шт | С6 |
+47µF х16V | 1шт | С10 |
1шт | С11 | |
+1000µF х35V | 1шт | С12 |
+100µF х35V | 1шт | С13 |
1µF х600V | 1шт | С14 |
100n х600V | 1шт | С15 |
TDA 1085 | 1шт | МС1 |
ВТА41 800V | 1шт Семистор | Т1 |
1N4742 | 1шт стабилитрон | |
1N5359 | 1шт стабилитрон | |
1шт диод | ||
1шт предохранитель | FU1 | |
На 3В | 1шт светодиод |
Изначально автор Bogdan на монтажной плате регулятора оборотов не указал буквенные
обозначения всех деталей, но благодаря моему товарищу (огромное ему спасибо) он
расставил все обозначения и исправил все неточности которые были у Bogdanа
ВНИМАНИЕ!!!
В расположении деталей ОШИБКА! Сопротивление R21
обозначено как R27. Будьте внимательны!
Вот так выглядит моя плата регулятора оборотов с поддержкой
мощности: https://drive.google.com/file/d/0B6x0JsiBUva0d3pUMzNXU0gtTjA/view?usp=sharing
Ссылки для скачивания:
Схема регулятора: http://www.chipmaker.ru/files/file/1490/
список деталей: https://drive.google.com/file/d/0B6x0JsiBUva0UmlaNV9nSEZGeTA/view?usp=sharing
расположение деталей:
https://drive.google.com/file/d/0B6x0JsiBUva0R05OYkhKazZCczA/view?usp=sharing
ОЧЕНЬ интересные видео по теме!!!
Агрессивные тесты.
Ссылка на немецкий вариант схемы: http://zisoft.de/elektronik/drehzahlregelung. html
Добавлено Анатолием:
Я думаю Александр не обидится если я в его теме выскажу несколько своих соображений.
Собрал уже не одну плату и могу сказать со сто процентной уверенностью. Если у кого то что то не работает, то проверяйте качество изготовления платы, качество и правильность монтажа, исправность элементов и двигателя. Все причины не работы (некорректной работы) кроются только в этом. Печатки и схемы выложенные в нете рабочие. Сам недавно столкнулся с подобным, две разные платы, а проявление неисправности одно и тоже. При включении и добавлении оборотов двигатель раскручивается рывками было ощущение как будто семистор работает на одном полупериоде. Оказалось на одной плате при травлении исчезла дорожка к конденсатору С10 на 47,0х16V, во втором случае этот же конденсатор был высохший.
Попутно убедился, что если уменьшить С11 идущий на 14 ногу микросхемы до 22Н, то двигатель стартует, набирает максимальные обороты и обороты не регулируются. Поэтому с ним тоже нельзя ошибаться 47Н и точка.
Теперь по поводу замеров напряжения.
Я собираю платы с отдельным блоком питания, поэтому промеры даю для этого случая.
Исходные условия, к плате подключен двигатель с таходатчиком, регулятор оборотов в нулевом положении (минимум до конца), блок питания в розетку включён, 220В на плату не подаётся.
1-0,17В
2-0,17В
3-2,63В
4-0
5-0
6-2,4В
7-0,05В
8-0
9-14,65В
10-13,7В
11-12,83В
12-0,55В
13-0
14-11,34В
15-0,03В
16-0,03В
Условия те-же, но подключено 220В и регулятор стоит на небольших оборотах. Двигатель медленно вращается.
1-0,25В
2-0,3В
3-2,62В
4-0,55В
5-0,55В
6-2,4В
7-1,14В
8-0
9-14,2В
10-14,2В
11- не измеряется.
12-0,74В
13-0,69В
14-4,8В при касании щупом двигатель ускоряется.
15-0,73В
16-0,58В
Отличия могут быть но не очень большие. Напряжение на ноге 3 устанавливается регулятором R21.
Кроме этого советовал бы увеличить резистор R9 вместо 1,2 кОм ставить 20кОм. Этим уменьшается напряжение с таходатчика. И R17 вместо 68кОм ставить 27кОм. Ну и диод для защиты микросхемы само собой.
Пару слов по немецкой схеме. При правильной сборке, правильно выполненной печатке и исправных деталях всё работает без вопросов. Рекомендовал бы такую последовательность действий. Собрали плату, проверили сборку, микросхему не ставим. В панельку микросхемы подключаем на ноги 8-9 резистор 1,6кОм 1Вт, подключаем питание 220В, двигатель и таходатчик не подключен (это не принципиально), и меряем напряжение на подключённом резисторе. Должно быть 15-17В. Ставим микросхему, подключаем мотор и таходатчик и наслаждаемся работой. В немецкую схему советую внести следующее изменение. На регуляторе частоты вращения, на центральном отводе, запаять резистор 1,2кОм и второй конец этого резистора на клемму Х2-2, по семе. Боковую ногу регулятора которая раньше шла на центральный отвод, подключаем на корпус. Что это даёт. Раньше, при выведенном в ноль регуляторе, двигатель продолжал вращаться, теперь стоит как ему и положено. А методика настройки простая. Регулятор на ноль, включили, добавили немного оборотов, крутим Р1 пока обороты не станут красивыми на слух и визуально, обороты на максимум, крутим ограничение максимальных оборотов Р3, наслаждаемся своим мастерством.
Подключение мотора к контроллеру мотора
На этом шаге вы начнете с подключения моторов к плате контроллера мотора, прежде чем подключать держатель батареи к контроллеру мотора.
Просмотр стенограммы
2.6
Первый шаг к созданию детской коляски — это подключение моторов к плате контроллера моторов. Поскольку к большинству двигателей постоянного тока не подключены провода, вам необходимо подключить их самостоятельно. Для начала возьмем один из двигателей и подключим к нему два провода. Во-первых, мы собираемся зачистить два провода перемычки, используя ножницы, чтобы отрезать концы, и инструменты для зачистки проводов, чтобы удалить концы изоляции. ХОРОШО. Только ближе к концу? Ага, ближе к концу.
37,6
Оба конца или только один? Вы можете сделать оба конца сейчас. Нам понадобятся оба конца. И сколько мне нужно снять примерно на дюйм. ХОРОШО. Так что я скажу — Несколько сантиметров. Так что я просто вставил это сюда, а затем нажал. Это верно? Ага.
59.1
Что мне с этим делать? Если вы скрутите концы оголенных проводов вместе, то они должны остаться красивыми и плотными. Вот оно. Итак, теперь вы подготовили два провода перемычки, вы собираетесь продеть два провода через разъемы в двигателе. Первое, что нам нужно сделать, это снять пластиковый зажим на двигателях.
82.8
Итак, протяните кабели через эти маленькие отверстия здесь, в разъемах. Ага. Контакты. Итак, вы продеваете провод через металлические контакты.
99
А если потом согнуть провод на себя, то паять будет легче. ХОРОШО. Теперь, когда вы пропустили два провода через один из двигателей, вы собираетесь припаять провода к двигателям, чтобы убедиться, что они надежно закреплены. ХОРОШО. Итак, вы хотите приложить жало паяльника к металлическим контактам на двигателе. Если вы нагреете контакт и провод перед нанесением припоя, то припою будет легче прикрепиться. Как долго мне нужно держать-нагреть его? Если нагреть контакт на пару секунд, то можно наносить припой на жало паяльника.
140.5
Как только он начнет дымиться и плавиться, тогда можно вынимать паяльник. Если вы считаете, что добавили недостаточно припоя, просто добавьте еще немного. ХОРОШО. Я думаю, что это чувствует себя в безопасности. Отличный. Если вам нужны советы по пайке, обязательно перейдите по ссылке в статье. Теперь, когда вы припаяли провода к двигателю, мы собираемся обрезать концы проводов — хорошо. – снова прикрепите пластиковый зажим– Правильно. – и надежно закрепите провода. Большой. Первое, что вам нужно сделать, это обрезать концы проводов. Ножницами именно так. Ага. А ты просто хочешь — ОК. Вы просто хотите обрезать конец оголенного провода. Идеальный. Это достаточно коротко?
185,6
Да, это здорово. А потом второй. Стараюсь не перерезать провод. Отличный. Следующее, что вам нужно сделать, это снова прикрепить пластиковый зажим к двигателю.
202.7
Затем вы возьмете кусок ленты и обмотаете им концы двигателей. Таким образом, провода остаются красивыми и безопасными. ХОРОШО. Итак, как это выглядит? Это выглядит великолепно. Итак, теперь мы возьмем оба мотора и прикрепим их к плате контроллера мотора. ХОРОШО. Фантастика. Нам нужно подключить каждый из этих проводов к одной из выходных клемм на контроллере мотора. ХОРОШО. Полезно ли мне крутить их снова? Ага. Если вы сначала скрутите провода, вам будет намного проще подключить их к клеммам. Первым делом нужно ослабить винты на каждой из выходных клемм.
238.1
Таким образом, у нас есть два выходных терминала на этой стороне и два на этой стороне. Только немного. Только немного. ХОРОШО. На обоих. Ага. Все в порядке. ХОРОШО. Теперь вам нужно поместить один из проводов в каждую из выходных клемм, а затем вы можете использовать отвертку, чтобы затянуть винты. И тогда вы можете потянуть за провод, чтобы убедиться, что он надежно закреплен на терминале. Теперь мы собираемся сделать то же самое с тем, что я подготовил ранее. ХОРОШО. Были ли у вас проблемы с подключением двигателей к контроллеру двигателя? Вам нужна помощь с чем-то, что не работает должным образом? Если это так, дайте нам знать в комментариях.
278,9
На следующем шаге вы подключите Raspberry Pi и аккумулятор к плате двигателя.
На этом шаге вы начнете с подключения моторов к плате контроллера мотора, прежде чем подключать держатель батареи к контроллеру мотора.
Инструкции предназначены для платы контроллера драйвера шагового двигателя постоянного тока с двойным Н-мостом L298N, и они будут одинаковыми для большинства плат контроллера двигателя. Проверьте документацию для вашей платы, если вы используете другую.
Что вам понадобится
Для этого шага вам понадобятся следующие предметы:
- Плата контроллера мотора
- Два двигателя постоянного тока 3–6 В
- Четыре перемычки (штекер-штекер или гнездо-штекер) или провод
- Отвертка
Вам также может понадобиться:
- Паяльник и припой
- Инструмент для зачистки проводов
- Ножницы
- Лента
Поначалу использование паяльника может показаться немного пугающим, но независимо от того, являетесь ли вы новичком в пайке или ветераном, этот ресурс «Начало работы с пайкой» даст вам несколько быстрых советов и приемов.
Двигатели постоянного тока
Большинство двигателей постоянного тока поставляются без проводов, а это значит, что вам нужно будет припаять их самостоятельно.
Подготовка проводов
Вам понадобится два провода для каждого двигателя постоянного тока, чтобы подключить его к плате контроллера двигателя. Кроме того, вы можете использовать инструмент для зачистки проводов, чтобы зачистить оба конца проводов перемычки, чтобы обнажить оголенный провод для подключения к каждому из двигателей. Демонстрацию того, как зачистить провод с помощью клещей для зачистки проводов, можно посмотреть в этом видео.
Снимите мягкий пластиковый зажим с двигателей, чтобы можно было прикрепить провода. Вы можете использовать плоскую отвертку, чтобы снять клипсу.
Проденьте оголенный провод через контакт на двигателе. Верхний наконечник: Может быть легче припаять провод к контакту на двигателе, если вы согните провод после того, как он пройдет через контакт.
Пайка проводов
Включите паяльник и подождите, пока он нагреется. Очистите жало паяльника перед его использованием; Вы можете использовать влажную губку или влажную ткань, чтобы удалить остатки, пока утюг горячий.
Нагрейте паяльником контакт на двигателе в течение секунды или двух. Удерживая паяльник на контакте, прикоснитесь концом припоя к жалом паяльника, пока припой не расплавится. Прекратите нанесение припоя, как только контакт и провод будут соединены припоем.
Подождите одну-две минуты, пока припой остынет, а затем осторожно попытайтесь сдвинуть провод, чтобы проверить, надежно ли он прикреплен к контакту. Если провод движется, вы можете либо повторно нагреть нанесенный припой паяльником и выровнять провод, либо нанести больше припоя на соединение.
Старайтесь не касаться паяльником пластикового покрытия проводов или любого пластика между двумя контактами, иначе пластик расплавится и начнет дымить. Дополнительные советы и рекомендации можно найти в этом руководстве по пайке.
После того, как провода будут надежно припаяны к двигателям, обрежьте концы проводов ножницами. Если провода случайно коснутся металлического корпуса во время подачи питания, это может привести к короткому замыканию цепи и остановке получения постоянного питания двигателем.
Прикрепите пластиковые зажимы к двигателям. Также рекомендуется обмотать конец двигателя, где вы прикрепили провод, лентой, чтобы защитить соединение и сохранить припой в хорошем состоянии.
Подключение двигателей к плате контроллера двигателя
Плата контроллера двигателя обычно имеет винтовые клеммы для подключения к ней двигателя. Для работы двигателя постоянного тока требуется две винтовые клеммы, а серводвигателю — четыре клеммы. Четыре клеммы OUT на плате, которую я использую, обведены зеленым ниже.
Двигатель постоянного тока должен использовать два провода, чтобы он мог вращаться вперед и назад. Подача сигнала высокого уровня на один провод и сигнала низкого уровня на другой провод приведет к вращению двигателя в одном направлении, а переключение сигналов с места на место приведет к вращению двигателя в другом направлении.
С помощью отвертки ослабьте винты в клеммных колодках с маркировкой OUT1 , OUT2 , OUT3 и OUT4 . Посмотрите документацию для вашей платы, если ваши метки отличаются.
Зачистить концы проводов; можно обрезать концы, если нужно. Вставьте зачищенные концы одного двигателя в клеммы OUT1 и OUT2 , а зачищенные концы второго двигателя в клеммы OUT3 и OUT4 . Затяните винты, чтобы провода надежно закрепились в клеммных колодках.
Обсуждение
Были ли у вас проблемы с подключением двигателей к контроллеру?
Вам нужна помощь с чем-то, что не работает должным образом?
Если это так, сообщите нам об этом в комментариях ниже.
Учебное пособие по регулятору скорости двигателя. Инженерное мышление
Изучите основы регулятора скорости электродвигателя. В этой статье мы узнаем, как спроектировать простой ШИМ-регулятор скорости для двигателя постоянного тока, изучая, как протекает ток в цепи и что делает каждый компонент. Вы даже можете построить схему самостоятельно!
Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube.
Это простой контроллер скорости с широтно-импульсной модуляцией для двигателя постоянного тока, который использует один из них, таймер 555, и мы собираемся показать вам, как работает схема, как ее спроектировать и даже превратить в профессионала. ищу печатную плату. Вы даже можете скачать копию нашей печатной платы и собрать свою собственную ЗДЕСЬ.
Проектирование схемы
Сердцем нашей системы является таймер 555. Это компонент интегральной схемы, а это означает, что внутри него находится несколько более мелких компонентов, объединенных в один корпус, что значительно облегчает нашу работу как дизайнеров. Мы увидим, как этот компонент работает, когда будем строить схему.
Теперь мы собираемся использовать Altium Designer для этого проекта, который любезно спонсировал эту статью. Все наши зрители могут получить бесплатную пробную версию программы ЗДЕСЬ.
Мы начинаем новый проект и создаем нашу схему, а также файл платы. Затем нам нужно начать добавлять наши компоненты, мы можем использовать встроенный инструмент, но мы собираемся использовать надстройку, которая, по нашему мнению, немного упростит задачу. Находим компонент на сайте поставщиков, мы используем mouser, но вы можете использовать кого хотите.
Мы нашли таймер 555, поэтому мы берем номер детали, вставляем его в загрузчик библиотеки и нажимаем «Поиск», он находит компонент, поэтому мы нажимаем «Добавить в дизайн».
Таймер 555 может выдерживать максимальную нагрузку около 200 миллиампер. Мы собираемся управлять одним из этих двигателей постоянного тока от источника питания 12 В, и мы видим, что при 12 В он потребляет ток около 1,4 А, и это без нагрузки, что уже больше, чем может выдержать таймер 555. Поэтому нам нужно будет использовать полевой МОП-транзистор, который представляет собой тип электронного переключателя.
Кстати, мы подробно рассмотрели, как работают двигатели постоянного тока, в нашей предыдущей статье ЗДЕСЬ .
Мы собираемся использовать полевой МОП-транзистор IRFZ24N, потому что он может работать как с напряжением, так и с током, а также имеет низкое сопротивление сток-исток в открытом состоянии. Итак, мы находим этот компонент и добавляем его в схему. Двигатель будет подключен к выводу стока MOSFET, а вывод истока соединится с землей.
МОП-транзистор обычно блокирует ток, поэтому двигатель не вращается. Однако, если мы подадим небольшое напряжение на вывод затвора, это позволит протекать некоторому току. Чем выше приложенное напряжение, тем больший ток может протекать, и поэтому двигатель вращается быстрее.
Таймер 555 подает напряжение на контакт затвора MOSFET с контакта 3. Для изменения напряжения и управления скоростью двигателя он посылает его в виде импульсов. Каждый импульс длится определенный период времени, в течение которого будет сегмент, когда сигнал включен, поэтому подается напряжение, и сегмент, когда сигнал выключен, поэтому напряжение не подается. Таким образом, МОП-транзистор будет испытывать среднее напряжение для каждого периода времени. Чем шире импульс включения, тем выше будет среднее напряжение. Это широтно-импульсная модуляция, расчеты для которой вы можете увидеть далее в статье.
Ток на вывод затвора очень мал, но мы поместим резистор 1 кОм между выводом затвора MOSFET и выводом 3 таймера 555, это защитит компонент, ограничив ток, если MOSFET выйдет из строя, и пропустит ток вытекать из ворот.
Заряд электронов будет накапливаться на контакте затвора MOSFET, и нам нужно его разрядить, чтобы выключить, поэтому мы помещаем еще один резистор на 1 кОм и подключаем его к земле, что обеспечивает путь разряда.
Я хочу подключить двигатель и источник питания снаружи от печатной платы, поэтому теперь я добавлю клемму для входа и еще одну для подключения двигателя. Я также хочу, чтобы встроенный переключатель включал и выключал контроллер, поэтому я нашел подходящий переключатель и добавил его. Теперь мы подключим входную клемму к земле, а затем подключим источник питания к переключателю. Затем мы подключаем выход переключателя к клемме двигателя. Затем подключите клемму двигателя к сливному штырьку MOSFET.
Электродвигатель состоит из витков проволоки, поэтому мы можем считать его катушкой индуктивности. Когда катушки индуктивности включены, они накапливают энергию в своем магнитном поле, когда мощность отключается, это магнитное поле разрушается, и катушка индуктивности выталкивает электроны через цепь. Это вызывает очень большой и внезапный всплеск энергии, который может повредить нашу цепь. Поэтому мы добавляем обратноходовой диод, который обеспечивает путь для безопасной циркуляции и уменьшения энергии. Для этого мы используем диод 1N4007, который выдерживает большой пиковый ток. Итак, мы добавляем это в схему.
Мы подробно рассмотрели катушки индуктивности, диоды и транзисторы в наших предыдущих статьях ЗДЕСЬ — Катушки индуктивности, диоды, транзисторы.
Теперь мы можем подключить контакт 8 таймера 555, который является источником питания компонентов, и мы подключаем его к плюсу. Затем подключаем контакт 1 к земле.
Внутри таймера у нас есть три резистора по 5 кОм между выводами 1 и 8, напряжение уменьшается на треть (1/3) после каждого резистора. Поскольку у нас есть 12 вольт на контакте 8, напряжение уменьшится до 8 вольт после первого резистора, а затем до 4 вольт после второго резистора. Таймер 555 использует их в качестве эталона.
К резисторам подключены два компаратора. Компаратор имеет положительный и отрицательный вход, а также один выход. Первый компаратор подключен к резисторам через отрицательный вход. Положительный вход подключен к контакту 6, пороговому контакту. Компаратор 2 подключен к резисторам через положительный вход. Его отрицательный вход подключен к контакту 2, триггерному контакту.
Теперь компараторы подключены к двум разным напряжениям, поэтому он может их сравнивать. Если положительное входное напряжение выше отрицательного, он выдает высокий сигнал или положительное напряжение. Если отрицательное входное напряжение равно или выше положительного входного напряжения, на выходе будет низкий сигнал или нулевое напряжение.
Соединим контакты 2 и 6 вместе, чтобы напряжение было одинаковым. Выход компараторов подключается к другому внутреннему компоненту, называемому триггером. Первый компаратор подключается к входу «сброс», второй компаратор подключается к входу «установка». Существует также вывод с именем «не Q». Когда триггер получает высокий уровень сигнала от компаратора 1, он выдает высокий уровень сигнала. Когда триггер получает высокий сигнал от компаратора 2, он выдает низкий сигнал. Если оба компаратора обеспечивают низкий уровень сигнала, триггер остается неизменным и продолжает работу. Затем он проходит через другой компонент, называемый инвертором, который просто инвертирует полученный сигнал.
Если это кажется запутанным, не волнуйтесь, это станет понятным через мгновение, когда мы будем проходить схему.
Если подать небольшое напряжение, скажем, 3,9 В на контакты 2 и 6, компаратор 1 выдаст низкий уровень сигнала, а компаратор 2 выдаст высокий сигнал. Это устанавливает временной интервал для начала. Триггер выдает низкий сигнал. Инвертор выдает высокий уровень сигнала.
Как повышаем напряжение, например до 6 вольт. Компаратор 1 и 2 будут выдавать сигнал низкого уровня, триггер остается неизменным, отсчет времени продолжается. Но при напряжении 8 вольт компаратор 1 выдает высокий сигнал, а компаратор 2 выдает низкий сигнал. Выход триггера теперь меняется на противоположный, и на выходе высокий уровень. Это сбрасывает время.
Выход триггера остается неизменным до тех пор, пока напряжение не упадет примерно до 4 вольт, где компаратор 1 выдает низкий уровень сигнала, а компаратор 2 выдает высокий сигнал, это снова запускает таймер.
Итак, мы видим, что по мере увеличения и уменьшения напряжения на выводах 2 и 6 изменяется выход таймера 555. Итак, чтобы контролировать напряжение и, следовательно, временной интервал, мы подключаем контакты 2 и 6 к конденсатору.
Когда мы подключаем конденсатор к источнику питания, он мгновенно достигает напряжения батареи. Но если мы подключим его через резистор, резистор замедлит время зарядки. Чем больше резистор, тем больше времени требуется, чтобы зарядить напряжение.
Итак, чтобы зарядить наш конденсатор, мы будем использовать фиксированный резистор на 1 кОм и потенциометр на 100 кОм. Потенциометр представляет собой переменный резистор, поэтому мы можем изменять время зарядки конденсатора. Нам также потребуется разрядить конденсатор, чтобы перезапустить таймер. Итак, мы добавим два диода, чтобы создать отдельный путь заряда и разряда. Ток в этой части цепи очень мал, так как резисторы находятся в килоомном диапазоне. Мы будем использовать два диода 1N4148, которые имеют прямой ток около 300 миллиампер, что подойдет для этого приложения.
Конденсатор будет керамическим конденсатором емкостью 10 нанофарад, через мгновение мы поймем почему. Итак, мы добавляем эти компоненты в схему, затем подключаем диоды к постоянному резистору, а диоды к контактам 1 и 3 потенциометра. Затем подключаем конденсатор к земле, а также к контактам 2 и 6 таймера 555, а также к контакту 2 потенциометра.
Контакт 7 является разрядным контактом, который подключен к нашему конденсатору времени. Внутри таймера 555 выход триггера соединяется с выводом затвора внутреннего транзистора. Это контролирует поток тока от конденсатора к земле. Когда на выходе триггера низкий уровень, транзистор закрыт, поэтому конденсатор заряжается, и напряжение начинает увеличиваться. Когда напряжение увеличивается настолько, что на выходе триггера появляется высокий уровень, открывается транзистор, который разряжает конденсатор, и, таким образом, напряжение уменьшается. Когда оно достигает 4 Вольт, конденсатор снова начинает заряжаться, когда он достигает 8 Вольт, он разряжается.
Вы можете узнать, как работают конденсаторы в нашей предыдущей статье ЗДЕСЬ
У нас также есть контакт 5, который является управляющим напряжением. Мы можем использовать это, чтобы переопределить компаратор 1. Нам это не нужно для этой схемы, поэтому мы подключаем его к земле через керамический конденсатор емкостью 0,1 мкФ. Заземление этого вывода предотвращает случайное переопределение, а конденсатор отфильтровывает любой шум или частоту.
У нас также есть контакт 4, контакт сброса, который мы соединим с плюсом схемы. Мы могли бы использовать это, чтобы переопределить и сбросить триггер, отключив питание. Нам это не нужно для этой схемы, поэтому она подключена к плюсу.
Итак, при зарядке ток течет через резистор, диод и левую часть потенциометра к конденсатору. На выходе триггера низкий уровень, поэтому разрядный транзистор закрыт. Контакт 3 выводит высокий сигнал.
Как только конденсатор заряжается до 8 В, на выходе триггера становится высокий уровень, который включает транзистор, и конденсатор разряжается через правую сторону потенциометра и диода. Контакт 3 выводит сигнал низкого уровня.
Транзистор остается открытым, поэтому конденсатор разряжается до тех пор, пока не достигнет 4 В, после чего триггер снова меняет направление, выключая транзистор и снова запуская отсчет времени. Этот цикл повторяется непрерывно. Конденсатор заряжается и разряжается, создавая пилообразную волну, а таймер 555 выдает прямоугольную волну с широтно-импульсной модуляцией.
Мы можем рассчитать производительность следующим образом.
Конденсатор заряжается через резистор R1 и левую сторону потенциометра. Таким образом, время зарядки рассчитывается по этой формуле. Если предположить, что потенциометр был на 50%. Тогда мы получим 0,35 миллисекунды.
Конденсатор разряжается через правую часть потенциометра, поэтому время разрядки рассчитывается по этой формуле. Это дает нам 0,34 миллисекунды.
Каждый цикл представляет собой комбинацию времени включения и выключения, поэтому 0,35 плюс 0,34 дает нам 0,69.миллисекунды.
Частота равна 1, деленной на время цикла, что дает нам 1428 Гц.
Мы используем конденсатор емкостью 10 нанофарад, потому что он обеспечивает очень высокую частоту, а двигатель постоянного тока лучше всего работает на высокой частоте. Если бы мы использовали очень большой конденсатор, например, 100 микрофарад, частота падала бы до 0,14 Герца, и каждый цикл выполнялся бы за 7 секунд. Таким образом, вы можете использовать конденсаторы других размеров, но учтите, как это повлияет на скорость двигателя.
Хорошо, теперь я создам простой прототип на макетной плате, чтобы проверить, все ли работает. Вроде нормально, скорость можно регулировать, так что будем доделывать дизайн печатной платы.
Добавляем аннотации. Затем мы импортируем компоненты в файл проекта печатной платы и тратим некоторое время на перестановку компонентов на плате. Когда все будет готово, мы обрисовываем доску и преобразуем ее в «защиту». Затем определите форму платы. Мы добавляем текст на клеммы, чтобы знать полярность цепи, когда будем ее использовать. Затем мы будем использовать функцию автоматического маршрута, чтобы соединить все. Как только он будет завершен, мы увеличим ширину маршрутов, которые будут нести более высокое напряжение и ток. Увеличение до 1 мм должно быть в порядке. Вероятно, нам нужно будет переместить некоторые маршруты в лучшее место, так что проверьте свой дизайн. После того, как мы удовлетворены, мы создаем наш полигон. И, наконец, мы можем экспортировать наши файлы gerber.
Изготовление печатной платы
Итак, теперь мы готовы к печати нашей печатной платы.
Мы собираемся использовать JLC PCB для печати нашей печатной платы, которая также любезно спонсировала это видео. Они предлагают исключительную ценность с 5 печатными платами всего за 2 доллара. Обязательно посмотрите их, я оставлю для вас ссылку в описании видео.
Не забудьте, что вы можете скачать мои файлы дизайна, снова ссылки в описании видео для этого.
Итак, мы просто авторизуемся и загрузим наш gerber-файл. Через несколько секунд он генерирует предварительный просмотр схемы на экране. Затем мы можем настроить дизайн с помощью различных цветов и материалов и т. д. Но я оставлю их по умолчанию и сохраню в корзину. Затем мы идем к кассе, заполняем наши почтовые данные, а затем выбираем вариант почтовых расходов. Я лично хочу, чтобы это было очень быстро, поэтому я выбираю экспресс-почту, которая дороже, вы можете выбрать более медленные методы, чтобы сэкономить на расходах. Затем отправляем заказ и оплачиваем.
Через несколько дней наша плата приходит по почте. Доски выглядят отлично, я очень доволен результатом.
Итак, начинаем припаивать компоненты к плате. Я начинаю с центра и продвигаюсь вперед. Я использую держатель для таймера 555, который предотвратит повреждение компонента от перегрева и позволит нам легко заменить компонент в случае неисправности. С такими сложными компонентами, как этот, мы можем использовать ленту, чтобы держать их на месте, пока мы их припаиваем.
Таким образом, мы припаиваем все компоненты на свои места, используя ленту везде, где это необходимо. И через несколько минут у нас должна получиться идеально выглядящая печатная плата.
Теперь для теста подключаем стендовый блок питания и двигатель к плате.