Элемент пельтье что это такое: Что такое элемент Пельтье и как его сделать своими руками?

Содержание

Элемент Пельтье — Практическая электроника

Все вы знаете, что с помощью электрического тока можно нагревать какие-либо предметы. Это может быть паяльник, электрочайник, утюг, фен, различного рода обогревашки и тд. Но слышали ли вы, что с помощью электрического тока можно охлаждать? «Ну а как же, например, бытовой холодильник» — скажите вы. И будете не правы. В бытовом холодильнике электрический ток  оказывает только вспомогательную функцию: гоняет фреон по кругу.

Что такое элемент Пельтье

Но существуют ли такие радиоэлементы, которые при подаче на них электрического тока вырабатывают холод? Оказывается существуют ;-). В 1834 году французский физик Жан Пельтье обнаружил поглощение тепла при прохождении электрического тока через контакт двух разнородных проводников. Или, иными словами,  в этом месте наблюдалась пониженная температура. Ну и как положено в физике, чтобы не придумывать новое название этому эффекту, его называют в честь того, кто его открыл. Открыл что-то новое? Отвечай за базар)). С тех пор зовется такой эффект эффектом Пельтье.

Ну и как тоже ни странно, элемент, который вырабатывает холодок, называют элементом Пельтье. Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого основан на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. ThermoElectric Cooler — термоэлектрический охладитель).

Практический опыт с элементом Пельтье

Выглядеть он может по-разному, но основной его вид — это прямоугольная или квадратная площадка с двумя выводами.  Сразу же отметил сторону «А» и сторону «Б» для дальнейших экспериментов

Почему я пометил стороны?

Вы думаете, если мы просто тупо подадим напряжение на этот элемент, он у нас будет полностью охлаждаться? Не хочу вас разочаровывать, но это не так… Еще раз внимательно читаем определение про элемент Пельтье. Видите там словосочетание «разности температур»? То то и оно. Значит, у нас какая-то сторона будет греться, а какая-то охлаждаться. Нет в нашем мире ничего идеального.

Для того, чтобы определить температуру каждой стороны элемента Пельтье, я буду использовать мультиметр, который шел в комплекте с термопарой

Сейчас он показывает комнатную температуру. Да, у меня тепло ;-).

Для того, чтобы определить, какая сторона элемента Пельтье греется, а какая охлаждается, для этого цепляем красный вывод на плюс, черный — на минус и подаем чуток напряжения, вольта два-три. Я узнал, что у меня сторона «А» охлаждается, а сторона «Б» греется, пощупав их рукой. Если перепутать полярность, ничего страшного не случится. Просто сторона А будет нагреваться, а сторона Б охлаждаться, то есть они поменяются ролями.

Пока ты тут, узнай что такое твердотельное реле ! Это бесплатно.

Итак, номинальное (нормальное) напряжение для работы элемента Пельтье — это 12 Вольт. Так как  я подключил на красный  — плюс, а на черный — минус, то у меня сторона Б греется. Давайте замеряем ее температуру.  Подаем напряжение 12 Вольт и смотрим на показания мультиметра:

77 градусов по Цельсию — это не шутки. Эта сторона нагрелась так, что когда ее трогаешь, она обжигает пальцы.

Поэтому главной фишкой использования элемента Пельтье в своих электронных устройствах является большой радиатор. Желательно, чтобы радиатор обдувался вентилятором. Я пока что взял радиатор от усилителя, который  дали в ремонт. Намазал термопасту КПТ-8 и прикрепил элемент Пельтье к радиатору.

Подаем 12 Вольт и замеряем температуру стороны А:

7 градусов по Цельсию). Когда трогаешь, пальцы замерзают.

Но также есть и обратный эффект, при котором можно вырабатывать электроэнергию с помощью элемента Пельтье, если одну сторону охлаждать, а другую нагревать. Очень показательный пример — это фонарик, работающий от тепла руки

Потребляемая мощность элемента Пельтье

Элемент Пельтье сам по себе считается очень энергозатратным. Регулировка температуры его сторон достигается напряжением. Чем больше напряжение, тем большую силу тока он потребляет. А чем больше силы тока он потребляет, тем быстрее набирает температуру. Поэтому, можно регулировать холодок, тупо меняя значение напряжения).

Вот некоторые  значения по потреблению электрического тока элементом Пельтье:

При напряжении в 1 Вольт он кушает 0,3 Ампера. Неплохо)

Повышаю напряжение до 3 Вольт

Кушает уже почти 1 Ампер.

Повышаю до 5 Вольт

Чуть больше полтора Ампера.

Даю 12 Вольт, то есть его рабочее напряжение:

Жрет уже почти 4 Ампера! Грабеж).

Давайте грубо посчитаем его мощность. 4х12=48 Ватт. Это даже больше, чем 40 Ваттная лампочка, которая висит у вас в кладовке). Если элемент Пельтье такой прожорливый, целесообразно ли из него делать бытовые холодильники и холодильные камеры? Конечно же нет! Такой холодильник у вас будет жрать Киловатт 10 не меньше! Но зато есть один маленький плюс — он будет абсолютно бесшумен :-). Но если нет никакой возможности, то делают холодильники даже из элементов Пельтье. Это в основном  мини холодильники для автомобилей. Также элемент Пельтье некоторые используют для охлаждения процессора на ПК. Получается  очень эффективно, но по энергозатратам лучше все-таки ставить старый добрый вентилятор.

Где купить элемент Пельтье

На Али можно найти даже мини-кондиционер из элемента Пельтье вот по этой ссылке.

На Али этих элементов Пельтье можете выбрать сколь душе угодно!

Вот ссылка на них

Элемент Пельтье | это… Что такое Элемент Пельтье?

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Содержание

  • 1 Принцип действия
  • 2 Достоинства и недостатки
  • 3 Применение
  • 4 Ссылки
  • 5 Примечания

Принцип действия

В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используются контакт двух полупроводников.

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К.

Достоинства и недостатки

Достоинством элемента Пельтье является небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования.

Недостатком элемента Пельтье является очень низкий коэффициент полезного действия, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, элементы Пельтье нашли широкое применение, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

В батареях элементов Пельтье[1] возможно достижение теоретически очень большой разницы температур, в связи с этим лучше использовать импульсный метод регулирования температуры, благодаря которому можно снизить также потребление энергии.

Применение

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур, или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, необходимая мощность охлаждения невелика.

Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.

В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 К ниже, чем с помощью обычных компрессионных охладителей (до −80 для одностадийних холодильников и до −120 для двухстадийных).

Элементы Пельтье применяются также в качестве источника электрической энергии. Это возможно в случае, когда доступен источник тепловой энергии (геотермальный источник, печь, костер) или просто два близко расположенных объекта с разной температурой (трубопроводы горячей и холодной воды, нагретая на солнце металлическая пластина и сосуд со снегом или водой). Такой источник электрической энергии может быть применен для питания измерительной и сигнальной аппаратуры, а также для заряда аккумуляторов различных электронных устройств. http://poselenie. ucoz.ru/publ/6-1-0-45 http://overland-botsman.narod.ru/termogen.htm

Ссылки

Примечания

  1. http://timeinventor.com/news.php?readmore=41 Батарея элементов Пельтье

Элементы Пельтье

Элементы Пельтье / термоэлектрические охладители (ТЭО) представляют собой тепловые насосы, передающие тепло с одной стороны на другую в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.

—> Купить контроллер TEC здесь

Содержание

  • Основы элемента Пельтье
    • Модель элемента Пельтье
    • Параметры элемента Пельтье
  • Свойства и поведение элементов Пельтье
    • Сравнение теплового насоса с текущим
    • Коэффициент полезного действия (COP) (КПД)
    • Отвод тепла от элемента Пельтье
    • Зависимость отведенного тепла от dT
    • Напряжение в зависимости от тока
  • Многоступенчатые элементы Пельтье
  • Производители

Основы элемента Пельтье

Элемент Пельтье способен передавать тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами, когда течет ток.

В зависимости от направления протекания постоянного тока можно охлаждать и нагревать с помощью элементов Пельтье без замены разъемов или механической настройки. Дополнительные преимущества заключаются в возможности реализации небольших конструкций и отсутствии движущихся частей. Ток, подаваемый на элемент Пельтье, регулируется контроллером ТЭО.

Левая сторона: Стандартный элемент Пельтье       Правая сторона: Специальные типы элементов Пельтье

Обычно идентификация производителя напечатана на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье

Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снижать охлаждающую способность элемента.

Как вы можете видеть на правом рисунке, существуют различные типы элементов Пельтье. Они различаются по размеру и форме, мощности и температурному диапазону.

Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные формы
Диапазон температур: перепад температур dT макс. до 130 °C (многоступенчатый), макс. температура до 200 °C
Максимальная мощность охлаждения: до 290 Вт

Элемент Пельтье Модель

Элементы Пельтье можно охарактеризовать с помощью модели. В этой модели учитываются следующие три эффекта

  • Эффект Пельтье Q p : Перенос тепла с одной стороны на другую. Описано в этом уравнении Q p = I * α * T
  • Обратный поток тепла Q Rth : Поток тепла с горячей стороны на холодную. Описано в этом уравнении Q Rth = dT / Rth
  • Джоулевы нагрев/потери Q Rv представляют собой сопротивления R v : Описанные в этом уравнении Q Rv = I 2 * R v / 2.
    холодная сторона. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не включается в это уравнение.

Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов Q p , Q Rth и Q Rv .

В случае охлаждения уравнение для Q c . выглядит следующим образом: Q c = Q p — Q Rth — Q Rv .

Параметры элемента Пельтье

Помимо механических свойств элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляются производителем: Q max , dT max , U max , I max

  • Q max : Максимальная производительность теплового насоса при разнице температур между горячей и холодной сторонами 0 °K
  •  dT max : Максимальная разность температур на элементе Пельтье, когда тепло не перекачивается
  •  I макс. : Ток через элемент Пельтье при Q макс.
  •  U макс. : Напряжение через элемент Пельтье при Q макс.

Параметры Q max и dT max являются теоретическими цифрами и используются для описания поведения элементов Пельтье. Однако эти максимальные значения никогда не достигаются в термоэлектрическом приложении. Они предоставляются производителем для характеристики производительности модуля Пельтье.

В термоэлектрическом применении всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.

Свойства и поведение элементов Пельтье

Следующие четыре диаграммы характеризуют товар с элементами Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье. Подобные схемы иногда используют и производители, например Ferrotec. Все значения на графиках относительные.

Зависимость теплового насоса от тока

На этой нормализованной диаграмме показано соотношение между выходной мощностью теплового насоса по оси y и током по оси x для различных значений разности температур между горячей и холодной сторонами (dT = T горячий — T холодный ) в случае охлаждения.

Динамика системы. Нормированная диаграмма Тепловой насос в зависимости от тока

Только при относительно небольшой разнице температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда необходимы более высокие перепады температур.

Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, так как тепло подается на холодную сторону, разница температур подавляется.

Обычно ток через элемент Пельтье должен составлять от 0 до 0,7 умноженного на I max .

Динамика системы

Динамика системы. Нормализованная диаграмма Тепловой насос в зависимости от тока

Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры (и, следовательно, dT) или при увеличении тепловой нагрузки.

Если мы используем элемент Пельтье с током около 25 % от I макс. можно компенсировать повышение dT на 10 градусов по Кельвину — точка от A до B — Чтобы обеспечить постоянную производительность теплового насоса, ток должно быть увеличено. Производительность теплового насоса также может быть увеличена без изменения dT, если мы перейдем от A к C.

Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать 10- Повышение dT по шкале Кельвина — точки от D до E — когда производительность теплового насоса не должна изменяться. Производительность теплового насоса можно увеличить без потери разницы температур, если перейти от D к F.

Однако, если элемент Пельтье работает при максимальном токе, изменение температуры не может быть компенсировано увеличением тока. Переход от более низкой к более высокой разности температур приведет к снижению производительности теплового насоса.

Коэффициент полезного действия (COP) (КПД)

Определение COP – это теплота, поглощаемая на холодной стороне Q C , деленная на входную мощность P el элемента Пельтье: COP = Q C /P эль . COP в принципе представляет собой эффективность элемента Пельтье при охлаждении.

На следующей диаграмме показана производительность (COP) в зависимости от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.

На этой диаграмме показана зависимость производительности (COP) от текущего соотношения. Используйте его, чтобы найти рабочий ток, обеспечивающий наибольшую производительность для соответствующей разницы температур dT.

С левой стороны мы видим, что КПД максимален при наименьшем перепаде температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электрической мощности. Как видим, в зависимости от dT соответствующий максимум КПД находится на разных уровнях тока — при большем dT он смещается вправо. Если мы проследим за кривой вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить только небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких перепадов температур.

Причина, по которой COP не начинается с нуля при dT > 0 K, заключается в том, что сначала обратный поток тепла Q Rth должен быть компенсирован эффектом Пельтье Q p , прежде чем элемент Пельтье остынет.

Тепло, отводимое элементом Пельтье

На следующей диаграмме показана теплота Q h , рассеиваемая на теплой стороне элемента Пельтье, в зависимости от тока при охлаждении.

Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока при различных перепадах температур dT.

Значения нормализованные и относительные. Как видите, Q h , отклоненное элементом Пельтье, может быть в 2,6 раза больше Q max . Количество тепла на горячей стороне Q h может быть таким большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться. Q h = Q p + Q Применяется Rv .

Зависимость отведенного тепла от dT

На следующей диаграмме показано соотношение между Q h и Q C для разных dT в случае охлаждения. Отношение Q h / Q c показывает, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.

Нормализованная диаграмма, показывающая количество тепла, отводимого радиатором, в зависимости от количества перекачиваемого тепла в зависимости от тока для различных значений dT.

Это означает, что при большом dT теплоотвод рассеивает большое количество тепла при сравнительно малом количестве тепла, поглощаемом на холодной стороне элемента Пельтье.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это приводит к теплу 1,75 Вт на горячей стороне Q h = 1,75 Вт, если dt = 20 K. При dT = 40 K это около 3,5 Вт на горячей стороне Q ч = 3,5 Вт. при разных значениях температурных перепадов между горячей и холодной стороной (dT = T горячий — T холодный ) в случае охлаждения.

Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных значений dT.

Как видите, кривая линейна. Поведение элемента Пельтье такое же, как у резистора с источником напряжения. Наклон кривой уменьшается с увеличением dT. Смещение по оси Y связано с эффектом Зеебека.

Многоступенчатый элемент Пельтье

Многоступенчатый элемент Пельтье

Все приведенные выше схемы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многокаскадные элементы Пельтье используются, когда требуются более высокие значения dT (до 125 К). Но Q max ниже, т.е. может рассеивать меньше тепла. Это недостаток многокаскадных элементов Пельтье.

Изготовители

Изготовители Описание Страна
Deltron AG
www. deltron.ch
Термоэлектрические модули Швейцария
Ferrotec
Thermal.ferrotec.com
Термоэлектрические модули США, Азия, Европа
Laird
www.lairdthermal.com
Термоэлектрические модули Соединенное Королевство
II-VI
www.i-vi.com
Термоэлектрические модули США, Азия, Европа
Устройства CUI
www.cuidevices.com
Термоэлектрические модули США
Peltron GmbH
www.peltier.de
Термоэлектрические модули, элементы для термоциклирования Германия
Европейская термодинамика, ООО
www.europeanthermodynamics.com
Термоэлектрические модули, элементы для термоциклирования Германия

—> Купить контроллер TEC здесь

Элементы Пельтье

Элементы Пельтье / термоэлектрические охладители (ТЭО) представляют собой тепловые насосы, которые переносят тепло с одной стороны на другую в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.

—> Купить контроллер TEC здесь

Содержание

  • Основы элемента Пельтье
    • Модель элемента Пельтье
    • Параметры элемента Пельтье
  • Свойства и поведение элементов Пельтье
    • Сравнение теплового насоса с текущим
    • Коэффициент полезного действия (COP) (КПД)
    • Отвод тепла от элемента Пельтье
    • Зависимость отведенного тепла от dT
    • Напряжение в зависимости от тока
  • Многоступенчатые элементы Пельтье
  • Производители

Основы элемента Пельтье

Элемент Пельтье способен передавать тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами, когда течет ток.

В зависимости от направления протекания постоянного тока можно охлаждать и нагревать с помощью элементов Пельтье без замены разъемов или механической настройки. Дополнительные преимущества заключаются в возможности реализации небольших конструкций и отсутствии движущихся частей. Ток, подаваемый на элемент Пельтье, регулируется контроллером ТЭО.

Левая сторона: Стандартный элемент Пельтье       Правая сторона: Специальные типы элементов Пельтье

Обычно идентификация производителя напечатана на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье

Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снижать охлаждающую способность элемента.

Как вы можете видеть на правом рисунке, существуют различные типы элементов Пельтье. Они различаются по размеру и форме, мощности и температурному диапазону.

Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные формы
Диапазон температур: перепад температур dT макс. до 130 °C (многоступенчатый), макс. температура до 200 °C
Максимальная мощность охлаждения: до 290 Вт

Элемент Пельтье Модель

Элементы Пельтье можно охарактеризовать с помощью модели. В этой модели учитываются следующие три эффекта

  • Эффект Пельтье Q p : Перенос тепла с одной стороны на другую. Описано в этом уравнении Q p = I * α * T
  • Обратный поток тепла Q Rth : Поток тепла с горячей стороны на холодную. Описано в этом уравнении Q Rth = dT / Rth
  • Джоулевы нагрев/потери Q Rv представляют собой сопротивления R v : Описанные в этом уравнении Q Rv = I 2 * R v / 2.
    холодная сторона. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не включается в это уравнение.

Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов Q p , Q Rth и Q Rv .

В случае охлаждения уравнение для Q c . выглядит следующим образом: Q c = Q p — Q Rth — Q Rv .

Параметры элемента Пельтье

Помимо механических свойств элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляются производителем: Q max , dT max , U max , I max

  • Q max : Максимальная производительность теплового насоса при разнице температур между горячей и холодной сторонами 0 °K
  •  dT max : Максимальная разность температур на элементе Пельтье, когда тепло не перекачивается
  •  I макс. : Ток через элемент Пельтье при Q макс.
  •  U макс. : Напряжение через элемент Пельтье при Q макс.

Параметры Q max и dT max являются теоретическими цифрами и используются для описания поведения элементов Пельтье. Однако эти максимальные значения никогда не достигаются в термоэлектрическом приложении. Они предоставляются производителем для характеристики производительности модуля Пельтье.

В термоэлектрическом применении всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.

Свойства и поведение элементов Пельтье

Следующие четыре диаграммы характеризуют товар с элементами Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье. Подобные схемы иногда используют и производители, например Ferrotec. Все значения на графиках относительные.

Зависимость теплового насоса от тока

На этой нормализованной диаграмме показано соотношение между выходной мощностью теплового насоса по оси y и током по оси x для различных значений разности температур между горячей и холодной сторонами (dT = T горячий — T холодный ) в случае охлаждения.

Динамика системы. Нормированная диаграмма Тепловой насос в зависимости от тока

Только при относительно небольшой разнице температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда необходимы более высокие перепады температур.

Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, так как тепло подается на холодную сторону, разница температур подавляется.

Обычно ток через элемент Пельтье должен составлять от 0 до 0,7 умноженного на I max .

Динамика системы

Динамика системы. Нормализованная диаграмма Тепловой насос в зависимости от тока

Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры (и, следовательно, dT) или при увеличении тепловой нагрузки.

Если мы используем элемент Пельтье с током около 25 % от I макс. можно компенсировать повышение dT на 10 градусов по Кельвину — точка от A до B — Чтобы обеспечить постоянную производительность теплового насоса, ток должно быть увеличено. Производительность теплового насоса также может быть увеличена без изменения dT, если мы перейдем от A к C.

Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать 10- Повышение dT по шкале Кельвина — точки от D до E — когда производительность теплового насоса не должна изменяться. Производительность теплового насоса можно увеличить без потери разницы температур, если перейти от D к F.

Однако, если элемент Пельтье работает при максимальном токе, изменение температуры не может быть компенсировано увеличением тока. Переход от более низкой к более высокой разности температур приведет к снижению производительности теплового насоса.

Коэффициент полезного действия (COP) (КПД)

Определение COP – это теплота, поглощаемая на холодной стороне Q C , деленная на входную мощность P el элемента Пельтье: COP = Q C /P эль . COP в принципе представляет собой эффективность элемента Пельтье при охлаждении.

На следующей диаграмме показана производительность (COP) в зависимости от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.

На этой диаграмме показана зависимость производительности (COP) от текущего соотношения. Используйте его, чтобы найти рабочий ток, обеспечивающий наибольшую производительность для соответствующей разницы температур dT.

С левой стороны мы видим, что КПД максимален при наименьшем перепаде температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электрической мощности. Как видим, в зависимости от dT соответствующий максимум КПД находится на разных уровнях тока — при большем dT он смещается вправо. Если мы проследим за кривой вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить только небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких перепадов температур.

Причина, по которой COP не начинается с нуля при dT > 0 K, заключается в том, что сначала обратный поток тепла Q Rth должен быть компенсирован эффектом Пельтье Q p , прежде чем элемент Пельтье остынет.

Тепло, отводимое элементом Пельтье

На следующей диаграмме показана теплота Q h , рассеиваемая на теплой стороне элемента Пельтье, в зависимости от тока при охлаждении.

Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока при различных перепадах температур dT.

Значения нормализованные и относительные. Как видите, Q h , отклоненное элементом Пельтье, может быть в 2,6 раза больше Q max . Количество тепла на горячей стороне Q h может быть таким большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться. Q h = Q p + Q Применяется Rv .

Зависимость отведенного тепла от dT

На следующей диаграмме показано соотношение между Q h и Q C для разных dT в случае охлаждения. Отношение Q h / Q c показывает, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.

Нормализованная диаграмма, показывающая количество тепла, отводимого радиатором, в зависимости от количества перекачиваемого тепла в зависимости от тока для различных значений dT.

Это означает, что при большом dT теплоотвод рассеивает большое количество тепла при сравнительно малом количестве тепла, поглощаемом на холодной стороне элемента Пельтье.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это приводит к теплу 1,75 Вт на горячей стороне Q h = 1,75 Вт, если dt = 20 K. При dT = 40 K это около 3,5 Вт на горячей стороне Q ч = 3,5 Вт. при разных значениях температурных перепадов между горячей и холодной стороной (dT = T горячий — T холодный ) в случае охлаждения.

Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных значений dT.

Как видите, кривая линейна. Поведение элемента Пельтье такое же, как у резистора с источником напряжения. Наклон кривой уменьшается с увеличением dT. Смещение по оси Y связано с эффектом Зеебека.

Многоступенчатый элемент Пельтье

Многоступенчатый элемент Пельтье

Все приведенные выше схемы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многокаскадные элементы Пельтье используются, когда требуются более высокие значения dT (до 125 К). Но Q max ниже, т.е. может рассеивать меньше тепла. Это недостаток многокаскадных элементов Пельтье.

Изготовители

Изготовители Описание Страна
Deltron AG
www.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *