Type c ток: Революция интерфейсов. USB 3.1 Type-C в деталях. Взгляд электронщика / Хабр

Содержание

Революция интерфейсов. USB 3.1 Type-C в деталях. Взгляд электронщика / Хабр


Редко бывает, что одна лишняя буква в названии стандарта грозит совершить революцию в мире интерфейсов передачи данных и гаджетов, но появление последней разновидности USB 3.1 Type-C похоже как раз тот случай. Что же нам обещает принести очередное обновление старого доброго USB интерфейса?

  • Скорость передачи данных до 10 GBps
  • Возможность запитывания от порта устройств с потребляемой мощностью вплоть до 100Вт
  • Размеры коннектора сравнимые с micro-USB
  • Симметричность разъёма — у него не существует верха и низа, а значит нет ключа, который часто приводит к повреждениям как самих разъёмов, так и подключаемых через них гаджетов
  • С помощью данного интерфейса можно запитывать устройства с напряжением вплоть до 20 вольт
  • Больше не существует разных типов коннекторов — А и В. На обоих концах кабеля стоят совершенно одинаковые разъёмы. Как данные так и питающее напряжение могут передаваться через один и тот же разъём в обоих направлениях. В зависимости от ситуации каждый разъём может выступать в роли ведущего или ведомого
  • Нам обещают, что конструкция разъёма способна выдерживать до 10 000 подключений
  • Возможно использование этого интерфейса для непосредственного подключения вместо некоторых других широко распространённых интерфейсов для быстрого обмена данными.
  • Стандарт совместим сверху вниз как c обычным USB 3 интерфейсом, так и с его младшими братьями. Конечно не на прямую, но с помощью переходника через него возможно подключение скажем USB 2.0 диска


Под катом постараюсь разобрать тему по косточкам — начиная от конструкции разъёма и кабеля, и заканчивая кратким обзором профилей оборудования и новинок чипов для поддержки возможностей данного интерфейса. Я долго думал на какой площадке размещать статью, ведь все предыдущие касающиеся этой темы выходили на GT, но в моей публикации так много технических деталей, что она будет полезней не гикам, а потенциальным разработчикам, которым уже сегодня стоит начинать к нему присматриваться. Поэтому рискнул поселить статью тут.


Не буду касаться истории развития USB интерфейса, эта тема не плохо развита в данном комиксе

в смысле истории в картинках

Электроника — наука о контактах


Для начала сравнительные фото сегодняшнего героя в компании заслуженных предков.

Коннектор USB Type-C немного крупнее привычного USB 2.0 Micro-B, однако заметно компактнее сдвоенного USB 3.0 Micro-B, не говоря уже о классическом USB Type-A.

Габариты разъема (8,34×2,56 мм) позволяют без особых сложностей использовать его для устройств любого класса, включая смартфоны и планшеты.


Сигнальные и силовые выводы размещены на пластиковой вставке пожалуй это самое слабое его место в центральной части разъёма. Контактная группа USB Type-C содержит 24 вывода. Напомню, что у USB 1.0/2.0 имелось всего 4 контакта, а разъемам USB 3.0 потребовалось уже 9 выводов.

Если внимательно присмотреться к рисунку слева, то видно, что контакты имеют разную длину. Это обеспечивает их замыкание в определённой последовательности. На рисунке в центре мы видим наличие защёлок, которые должны удерживать воткнутый кабель и обеспечивать тактильный щелчок в процессе соединения-рассоединения. На правом графике изображена зависимость усилия в процессе вставки-вынимания разъёма.

Пики, которые мы видим на нём — это моменты срабатывания защёлки.

Можно констатировать, что разработчики стандарта сделали если не всё, то почти всё, чтобы разъём стал максимально удобным и надёжным: он вставляется любым концом и любой стороной с ощутимым щелчком. По их мнению, он способен пережить эту процедуру более 10 тысяч раз.

Многоликий симметричный янус


Крайне приятной и полезной особенностью USB-C стал симметричный дизайн разъёма, позволяющий подключать его к порту любой стороной. Достигается это благодаря симметричному расположению его выводов.

По краям расположены выводы земли. Плюсовые контакты питания также расположены симметрично. В центре находятся контакты, отвечающие за совместимость с интерфейсом USB2 и младше. Им повезло больше всего — они дублируются и поэтому поворот на 180 градусов при соединении не страшен. Синим цветом помечены выводы, отвечающие за высокоскоростной обмен данными. Как мы видим тут всё хитрее. Если мы повернём разъём, то к примеру, выход TX1 поменяется местами с TX2, но одновременно и место входа RX1 займёт RX2.

Выводы Secondary Bus и USB Power Delivery Communication служебные и предназначены для общения между собой двух соединяемых устройств. Ведь им необходимо очень о многом друг другу рассказать, прежде чем начать обмен, но об этом позже.

А пока ещё об одной особенности. Порт USB Type-C изначально разрабатывался в качестве универсального решения. Помимо непосредственной передачи данных по USB, он может также использоваться в альтернативном режиме (Alternate Mode) для реализации сторонних интерфейсов. Такую гибкость USB Type-C использовала ассоциация VESA, внедрив возможность передачи видеопотока посредством DisplayPort Alt Mode.

USB Type-C располагает четырьмя высокоскоростными линиями (парами) Super Speed USB. Если две из них выделяются на нужды DisplayPort, этого достаточно для получения картинки с разрешением 3840×2160. При этом не страдает скорость передачи данных по USB. На пике это все те же 10 Гб/с (для USB 3.1 Gen2). Также передача видеопотока никак не влияет на энергетические способности порта. На нужды DisplayPort может быть выделено даже 4 скоростные линии. В этом случае будут доступны разрешения вплоть до 5120×2880. В таком режиме остаются не задействованы линии USB 2.0, потому USB Type-C все еще сможет параллельно передавать данные, хотя уже с ограниченной скоростью.

В альтернативном режиме для передачи аудиопотока используются контакты SBU1/SBU2, которые преобразуются в каналы AUX+/AUX-. Для протокола USB они не задействуются, потому здесь тоже никаких дополнительных функциональных потерь.

При использовании интерфейса DisplayPort, коннектор USB Type-C по-прежнему можно подключать любой стороной. Необходимое сигнальное согласование предусмотрено изначально.

Подключение устройств с помощью HDMI, DVI и даже D-Sub (VGA) также возможно, но для этого понадобятся отдельные переходники, однако это должны быть активные адаптеры, так как для DisplayPort Alt Mode, не поддерживается режим Dual-Mode Display Port (DP++).

Альтернативный режим USB Type-C может быть использован отнюдь не только для протокола DisplayPort. Возможно, вскоре мы узнаем о том, что данный порт научился, например, передавать данные с помощью PCI Express или Ethernet.

И этому дала, и тому дала. В общем… о питании.

Еще одна важная особенность, которую привносит USB Type-C – возможность передачи по нему энергии мощностью до 100 Вт. Этого хватит не только для питания/зарядки мобильных устройств, но и для работы ноутбуков, мониторов, а если пофантазировать, то и небольшого лабораторного источника питания.

При появлении шины USB, передача энергии была важной, но всё же второстепенной её функцией. Порт USB 1.0 обеспечивал всего 0,75 Вт (0,15 А, 5 В). Достаточно для работы мыши и клавиатуры, но не более того. Для USB 2.0 номинальная сила тока была увеличена до 0,5 А, что позволило получать от неё уже 2,5 Ватта для питания, например, внешних жестких дисков формата 2,5”. Для USB 3.0 номинально предусмотрена сила тока в 0,9 А, что при неизменном напряжении питания в 5В гарантирует мощность в 4,5 Вт. Специальные усиленные разъемы на материнских платах или ноутбуках способны были выдавать до 1,5 А для ускорения зарядки подключенных мобильных устройств, но и это “всего лишь” 7,5 Вт. На фоне этих цифр возможность передачи 100 Вт выглядит чем-то фантастическим.

Для того чтобы наполнить такой энергией порт USB Type-C служит поддержка спецификации USB Power Delivery 2.0 (USB PD). Если таковой нет, порт USB Type-C штатно сможет выдать на гора 7,5 Вт (1,5 А, 5 В) или 15 Вт (3А, 5 В) в зависимости от конфигурации. Для подробного описания этой спецификации в данной статье недостаточно места, да и всё равно я не сделаю это лучше, чем уважаемый stpark в своей замечательной статье.

Однако, совсем обойти эту архиважную тему не получится.

Для того, чтобы обеспечить мощность в 100 ватт при напряжении пять вольт потребуется ток в 20 ампер! Такое при габаритах кабеля USB Type-C возможно пожалуй только если изготовить его из сверхпроводника! Боюсь, что сегодня это будет обходиться пользователям дороговато, поэтому разработчики стандарта пошли по другому пути. Они увеличили напряжение питания до 20 Вольт. “Позвольте, но ведь оно выжжет напрочь мой любимый планшет” — воскликните вы, и будете совершенно правы. Для того, чтобы не пасть жертвой разъярённых пользователей, инженеры задумали хитрый трюк — они ввели систему силовых профилей. Перед соединением любое устройство находится в стандартном режиме. Напряжение в нём ограничено пятью вольтами, а ток двумя амперами. Для соединения с устройствами старого типа этим режимом всё и закончится, а вот для более продвинутых случаев, после обмена данными, устройства переходят в другой согласованный режим работы с расширенными возможностями. Чтобы познакомиться с основными существующими режимами глянем на таблицу.

Профиль 1 гарантирует возможность передачи 10 Вт энергии, второй уже – 18 Вт, третий – 36 Вт, четвёртый целых – 60 Вт, ну а пятый нашу заветную сотню! Порт, соответствующий профилю более высокого уровня, поддерживает все состояния предыдущих по нисходящей. В качестве опорных напряжений выбраны 5В, 12В и 20В. Использование 5В необходимо для совместимости с огромным парком имеющейся USB-периферии. 12В – стандартное напряжение питания различных компонентов систем. 20В предложено с учетом того, что для зарядки аккумуляторов большинства ноутбуков используются внешние БП на 19–20В.

Пара слов о кабелях!


Поддержка описываемого в статье формата в полном объёме потребует огромной работы не только программистов, но и производителей электроники. Потребуется разработать и развернуть производство очень большого количества компонентов. Самое очевидное это разъёмы. Для того, чтобы выдерживать высокие токи питающего напряжения, не оказывать помех передаче сигналов очень высокой частоты, да ещё при этом не выходить из строя после второго коннекта и не вываливаться в самый неподходящий момент, качество их изготовления должно быть радикально выше по сравнению с форматом USB 2.

Для совмещения передачи энергии большой мощности и сигналом с гигабитным трафиком, производителям кабелей придётся серьёзно напрячься.

Полюбуйтесь, как выглядит подходящий для нашей задачи кабель в разрезе.

Кстати, об ограничениях на длину кабелей при использовании интерфейса USB 3.1. Для передачи данных без существенных потерь на скоростях до 10 Гб/c (Gen 2) длина кабеля c разъемами USB Type-C не должна превышать 1 метр, для соединения на скорости до 5 Гб/c (Gen 1) – 2 метра.

Схемотехники производителей материнских плат, докстанций и ноутбуков долго будут ломать голову, как сгенерировать мощность порядка сотни ватт, а трассировщики, как подвести её к разъёму USB Type-C.

Производители чипов на низком старте.


Симметричное подсоединение и работа сигнальных линий в разных режимах потребует применения микросхем высокоскоростных коммутаторов сигналов. Сегодня уже появились первые ласточки. Вот, например, коммутатор от фирмы Texas Instruments, который поддерживает работу в устройствах как в режиме хоста так и ведомого устройства. Он способен коммутировать линии дифференциальных пар с частотой сигнала вплоть до 5ГГц.

При этом размеры чипа HDC3SS460 3.5 на 5.5 мм и в режиме покоя он потребляет ток порядка 1 микроампера. В активном же режиме — меньше миллиампера. Существуют и более продвинутые решения, например чипы производства NXP поддерживают частоту обмена до 10 ГГц.

Стали появляться и менеджеры питания, совмещённые с цепями защиты сигнальных линий от статики, например вот такое изделие от NXP

Оно предназначено для корректной обработки момента подключения разъёма, а так же размыкания цепи питания в случае неполадок. Данный чип уже поддерживает напряжение на VBUS до 30 вольт, а вот с максимальным коммутируемым током всё много хуже — он не должен превышать 1 ампера, что и понятно, учитывая габариты — 1.4 на 1.7 мм!

Безусловным лидером в этой области выступила Cypress, которая выпустила специализированный микроконтроллер с ядром ARM Cortex M0 поддерживающий все пять возможных для стандарта профилей питания.

Типичная схема включения для использования в ноутбуке даёт о нём некоторое представление, а подробнее с ним можно будет ознакомиться скачав даташит.

В отличие от чипа NXP он ориентирован на управление внешними силовыми ключами и поэтому может обеспечить коммутацию требуемых токов и напряжений, не смотря на свои малые размеры.

Внимание, Важная особенность для тех кто уже торопится заказать первые образцы — микроконтроллер не имеет USB интерфейса и не является полным и законченным решением. Он может служить только в качестве менеджера питания. В данный момент открыт предзаказ на поставку образцов и демонстрационных плат. Судьба этого микроконтроллера видимо будет во многом зависеть от того, снабдит ли фирма — производитель разработчиков референсными библиотеками для его использования в разных режимах.

Тот факт, что уже для него уже создано несколько демокитов сильно повышает вероятность последнего.

Лифт в небеса или Вавилонская башня.

Итак сегодня полностью сложилась революционная ситуация. Верхи не могут, а низы не хотят жить по старому. Всем надоела неразбериха с огромным количеством кабелей, зарядных устройств, блоков питания и их низкая надёжность.

Новый стандарт породил невиданную активность. Флагманы электронной индустрии — Apple, Nokia, Asus готовят к выпуску свои первые гаджеты с поддержкой USB Type-C. Китайцы уже штампуют кабели и переходники. На подходе докстанции и хабы с поддержкой высокой нагрузки по мощности. Производители чипов разрабатывают новые микросхемы и думают как бы запихнуть драйвер нового порта в микроконтроллер. Маркетологи решают куда воткнуть новый разъём, а инженеры чешут репу пытаясь реализовать многопрофильные устройства из уже имеющихся электронных компонентов.

Пока не ясно только одно. Что мы получим в результате? Удобный и надёжный разъём, который заменит львиную долю интерфейсов и найдёт повседневное применение, или вавилонское столпотворение, ведь ситуация может начать развиваться по не самому благоприятному сценарию:

Пользователи могут окончательно запутаться в многочисленных спецификациях и кабелях, которые будут выглядеть с виду совершенно одинаково, но при этом будут сертифицированы только под определённые профили. Попробуй разберись с ходу со всеми этими маркировками.

Но даже если получится, то это вряд ли решит проблему — китайцы без зазрения совести легко поставят на любой шнур любой значок. А если надо, то до кучи на каждую сторону одного кабеля разные, их не смутит даже если они будут взаимоисключающими.

Рынок наводнится невероятным количеством переходников разного калибра и сомнительного качества.

Пытаясь подключить одно устройство к другому никогда в результате не будешь знать к какому результату этот процесс приведёт и из-за чего коннект либо вовсе отсутствует, либо всё жутко глючит. То ли один из гаджетов не поддерживает нужный профиль, то ли поддерживает но не слишком корректно, то ли вместо качественного кабеля попалась его грубая китайской подделка. А что прикажете делать, если вдруг на вашем ноутбуке выйдет из строя единственный оставшийся на нём разъём?

Поживём — увидим как оно выйдет. Пока же будем надеяться на лучшее, хотя в переходный период точно придётся не легко. Понимаю, что моя статья ответила далеко не на все вопросы о новом стандарте, но пора закругляться и браться уже за работу, а то у меня вырисовывается как раз первый клиент, который уже мечтает о плате с поддержкой USB Type-C. Есть шанс протестировать это чудо технологий на практике и затем поделиться уже личным опытом.

До новых встреч.

P.S. Новый стандарт уже приводит к появлению весьма экзотических устройств. Так анонсирован кабель 100 метровой длины, который вроде бы никак не вписывается в стандарты. Вся фишка в том, что он активный. На обоих своих концах кабель имеет преобразователь сигналов USB3 интерфейса в оптический. Сигнал передаётся по оптике и на выходе конвертируется назад. Естественно он не передают энергию, а только данные. При этом каждый из преобразователей на его концах питается от разъёма к которому подключен.

Думаю, что в скором времени для подтверждения подлинности уважающие себя фирмы начнут вставлять в кабели активные метки. Проблема хабов породит невиданную активность у разработчиков и производителей DC-DC преобразователей. Как справедливо заметил уважаемый пользователь TimsTims может возникнуть например ситуация, что устройство, которое питает способно выдать только 12 вольт, а подключенные к нему устройства начнут затребовать скажем одно 5, другое 18.

В общем этот стандарт обещает прокормить не одного разработчика, да и производители в накладе не останутся.

Все факты о USB Type-C: этого вы не знали!

Сегодня наиболее универсальными, удобными в использовании и перспективными считаются разъемы USB Type-C, которые постепенно заменяют более старые версии интерфейсов, включая классические порты USB, а также HDMI, Thunderbolt и даже Ethernet. Теперь вместо целого ряда «разношерстных» разъемов в устройствах можно использовать только один порт стандарта USB Type-C, что позволяет производителям выпускать более тонкие и миниатюрные устройства. Если раньше такие разъемы использовались только в устройствах Apple, то теперь большинство производителей переходят на этот стандарт.

Отличительной особенностью разъемов нового стандарта является увеличенное количество контактов — их в USB 3. 1 Type C целых 24, в то время как в актуальном сегодня USB 3.0 всего лишь 8, а в «традиционном «USB 2.0» и того меньше – 4. Благодаря новой конструкции USB Type C позволяет подавать для электропитания или зарядки устройств больший ток (мощность подключаемый устройств может достигать 100 Вт), а также увеличить скорость обмена между устройствами до 40 Гбит/сек. Помимо этого по кабелю можно передавать видео разрешением до 5К, что позволило отказаться от разъемов HDMI. Еще один немаловажный плюс – возможность подключать кабель к устройствам, не задумываясь о правильной ориентации.

Выбирая кабель USB Type C, прежде всего, следует учитывать, что производители не всегда делают кабель «полным», в котором присутствуют все 24 провода. Такие кабели самые дорогостоящие, но не всегда они и нужны. В этих особенностях и попытаемся разобраться вместе. 

О разъемах в MacBook и MacBook Pro

Поскольку кабели USB Type-C изначально считались принадлежностями к ноутбукам линеек MacBook, рассмотрим реальные отличия, которые позволят правильно подобрать кабели и для других типов устройств. Прежде всего, следует отметить, что стандарт USB Type-C включает в себя спецификации нескольких поколений. 

Это USB Type-C 3.1 Gen 1, обеспечивающий обмен данными на скорости до 5 Гбит/сек (установлен в ноутбуках линейки MacBook 12′) и USB Type-C 3.1 Gen 2, через который устройства могут обмениваться информацией на скорости до 10 Гбит/сек (в режиме Thunderbolt — до 40 Гбит/сек). Последними могут похвастать ноутбуки линеек MacBook Pro выпущенные с 2016 по 2018 (порт сдвоенный). Поэтому, если вы имеете 12-дюймовый MacBook, то он точно не поддерживает протокол Thunderbolt 3 и переплачивать за наличие поддержки этой спецификации в покупаемом кабеле не стоит. Однако предусмотреть поддержку передачи видео в стандартах HDMI, VGA и DisplayPort все-таки желательно, так как в этой модели такая возможность имеется (при использовании переходников).

В новых моделях MacBook Pro (все линейки начиная с 2016 года) все немного по-другому. Так в 13-дюймовых версиях поддержка Thunderbolt 3 реализована для двух (из четырех) портов, а начиная с 2018 года (модели с TouchBar), такую возможность получили все 4 порта. Для 12 дюймовых ноутбуков все осталось по-прежнему. 

Выбираем правильный кабель USB Type-C

При выборе USB Type-C кабеля необходимо учитывать список задач, для которых он будет использоваться. Ведь спецификация вариантов довольно обширна, а полнофункциональные версии имеют очень высокую цену.

Для зарядки

Обычно кабели USB Type-C обеспечивают подзарядку устройств с максимальной мощностью до 100 Вт. Вместе с макбуками поставляется штатный зарядный кабель с встроенным контроллером, который автоматически ограничивает отдаваемую мощность зарядки.

12-дюймовый MacBook комплектуется кабелем, обеспечивающим мощность зарядки до 61 Вт, а USB Type-C кабель, поставляемый с версиями MacBook Pro на 13 и 15 дюймов, способен передавать мощность 87 Вт. Следует учитывать, что если подключить, например, MacBook Pro 15» (2018) к штатной 87-ваттной зарядке через кабель, рассчитанный на работу с 61-ваттным ноутбуком, то время заряда увеличится приметно в полтора раза. Такая ситуация характерна и для других зарядных кабелей.

Для передачи видеосигналов или подключения USB 2.0/USB 3.0 устройств

Если вы планируете подключать к своему MacBook или MacBook Pro дополнительный монитор или обычный телевизор и использовать для этих целей возможности интерфейса USB Type-C, в большинстве случаев может понадобиться специальный переходник, так как еще мало моделей мониторов и телевизоров оснащены соответствующим портом. При этом следует обращать внимание на интерфейс, которым оснащен подключаемый монитор или телевизор. 

Есть готовые решения для HDMI или VGA. Также можно приобрести кабель с переходником на USB 2.0/USB 3.0, однако скорость передачи через такой кабель будет ограничена 5 Гбит/сек. Именно на такую скорость рассчитан порт USB Type-C семейства 12-дюймовых MacBook.   

Также существуют специальные кабели USB Type-C для подключения Thunderbolt 3-дисплеев. При этом чтобы обеспечить максимальные характеристики, длина кабеля должна быть как можно меньше. Помимо этого можно подобрать кабель, который, помимо передачи данных будет заряжать батарею устройства. 

Для максимальной скорости данных (5K и 4K 60Гц)

Данные со скоростью до 40 Гбит/сек способен передавать кабель USB Type-C gen 2 с опцией Thunderbolt 3, однако только при определенных условиях. Прежде всего, его длина не должна превышать 45 сантиметров (18 дюймов). С увеличением длины скорость начинает резко падать. Так, при длине кабеля около 2 метров, скорость передачи снижается до 20 Гбит/сек, а часто и намного меньше. Чтобы обеспечить обмен данными на максимальной скорости используют так называемые активные кабели Thunderbolt 3, в которые вмонтирован дополнительный приемопередатчик, компенсирующий затухание линии.  

Как видите, все очень просто

Еще несколько рекомендаций по выбору USB Type-C кабеля:

  • Если вам не нужна максимальная скорость передачи данных и вас устроит вариант 20 Гбит/сек, при длине кабеля около 2 метров, не стоит тратить средства на дорогостоящий активный кабель Thunderbolt 3.
  • При подборе зарядного кабеля для «яблочных» устройств – лучше всего купить оригинальную версию;
  • Если вы ищите кабель для внешнего накопителя, то лучше всего подойдет качественная версия USB 3.1
  • Для 5K-мониторов или же при использовании совместно с профессиональными Thunderbolt 3-хабами подойдут короткие пассивные или активные кабели.

И самое главное – мы настоятельно не рекомендуем приобретать USB Type-C кабели или аксессуары от малоизвестных брендов. Особенно, если это шнуры для зарядки MacBook. Очень часто такие кабели стают причиной выхода со строя дорогостоящего устройства.

Описание USB Type-C, USB PD и USB PPS

Архитектура USB (универсальная последовательная шина) используется в качестве стандарта для разъемов и связанных с ними сигналов и подачи питания с 1996 года. За это время было разработано множество изменения спецификаций для повышения производительности систем, использующих эти стандарты. Последние разработки, применимые к конструкциям блоков питания, включают разъем USB Type-C, спецификацию USB Power Delivery и спецификацию USB Programmable Power Supply. Эти усовершенствования делают USB отличным вариантом для подачи питания, тогда как в прошлом USB был в основном поставщиком данных и сигналов с ограниченными возможностями питания. В этом посте мы обсудим взаимосвязь между USB Type-C, USB Power Delivery и USB Programmable Power Supply, а также то, как они связаны с источниками питания.

  • USB Type-C: — стандартный разъем USB; Преимущества включают компактный, гладкий и обратимый дизайн.
  • USB Power Delivery: — это спецификация, которая позволяет нагрузке и источнику питания согласовывать несколько стандартных уровней подачи питания. USB Power Delivery увеличивает мощность USB до 100 Вт и особенно полезна при подаче питания на несколько устройств.
  • Программируемый блок питания USB : это дополнительная спецификация к USB Power Delivery, описывающая, как нагрузка и источник питания взаимодействуют для увеличения уровней подачи питания. Эта функция может быть особенно полезна для зарядки аккумуляторов.

Разъем USB Type-C

Конструкция разъема USB Type-C (также называемого USB-C) симметрична, поэтому его можно подключать любым способом, то есть нет лицевой стороны вверх или вниз. Это позволяет вставлять вилку быстрее и проще, чем в предыдущих конструкциях USB-разъемов. В предыдущих конструкциях соединителя пользователь должен был визуально осмотреть соединитель, чтобы определить правильную ориентацию, или пройти процесс проб и ошибок, вставляя соединитель; создавая легкое, но слишком знакомое неудобство. Еще одна особенность штекера USB Type-C заключается в том, что он имеет закругленные края, и это обеспечивает преимущество самовыравнивающейся характеристики при вставке штекера.

Вилка USB Type-C предназначена для обеспечения среднего уровня мощности (менее 100 Вт), а характеристики, связанные с небольшой вилкой, позволяют подавать питание на широкий спектр компактных электронных устройств. Одним из преимуществ использования USB-разъемов для подачи питания и сигналов является то, что это сложная конструкция с относительно низкими затратами на разработку. Во многом это связано с экономией на масштабе, полученной за счет широкого распространения разъема на глобальном уровне. Еще одним преимуществом является то, что система была проверена большим количеством пользователей и проектов продуктов, а это означает, что дизайн продемонстрировал свою надежность и оставляет очень небольшую вероятность возникновения каких-либо неизвестных проблем в работе. Важно отметить, что USB Type-C обычно стоит дороже, чем USB-разъемы предыдущего поколения, из-за сложности и скорости, которую обеспечивает USB Type-C. Однако по мере того, как разъемы USB Type-C становятся все более распространенными, ожидается, что стоимость будет скорректирована соответствующим образом.

Несоответствующие приложения USB Type-C

Разработчик может выбрать использование разъема USB Type-C из-за элегантного дизайна, небольшого размера и низкой стоимости, но решить не соответствовать стандартам USB Power Delivery. Вероятность повреждения оборудования несоответствующей конструкцией будет низкой, если напряжение несоответствующего источника питания составляет 5 В, а максимальный ток нагрузки меньше номинального тока разъема 5 А. Существует значительный риск повреждения нагрузки, если несоответствующий источник питания обеспечивает выходное напряжение, превышающее устаревшее напряжение USB, равное 5 В.

Связь между USB Type-C, Power Delivery и 3.1 Gen 2

Разъем USB Type-C тесно связан с USB 3.1 Gen 2 и USB Power Delivery. Это часто создает путаницу в отношениях между концепциями Type-C, 3.1 Gen 2 и USB Power Delivery. Важно отметить, что хотя эти понятия связаны и дополняют друг друга, они независимы. Устройство или источник питания могут использовать разъем USB и не поддерживать USB 3.1 Gen 2 или USB Power Delivery.

Важно отметить, что протоколы USB могут быть реализованы с разъемами, отличными от указанных разъемов USB. Клиент может выбрать использование протоколов передачи данных и питания USB, чтобы воспользоваться чрезвычайно большими усилиями по разработке и проверке, уже развернутыми USB, но не использовать стандартизированные разъемы USB для создания собственной системы.

USB Power Delivery

Одной из целей USB является обеспечение функциональной совместимости между соответствующими реализациями старых и новых версий спецификаций. В предыдущих версиях стандартов USB подаваемое напряжение было указано равным 5 В. Стандарт USB Power Delivery допускает подаваемое напряжение 5 В, 9В, 15 В или 20 В и мощностью до 100 Вт.

Версия Максимальная мощность Напряжение Максимальный ток
USB 2.0 2,5 Вт 5 В 500 мА
USB 3.1 4,5 Вт 5 В 900 мА
USB-BC 1.2 7,5 Вт 5 В 1,5 А
USB Type-C 1.2 15 Вт 5 В 3 А
USB-PD 100 Вт 5/9/15/20 В 5 А

Эволюция уровней мощности USB

USB Power Delivery устанавливает рабочие протоколы, гарантирующие, что более высокое напряжение, доступное в последних версиях USB, не повредит устаревшее оборудование, рассчитанное на работу с напряжением 5 В. Чтобы предотвратить такое повреждение, USB Power Delivery требует, чтобы соответствующее оборудование первоначально подавало 5 В при максимуме 900 мА на нагрузку. Связь между нагрузкой и источником питания может тогда установить более высокий максимальный ток нагрузки и большее рабочее напряжение. Если после подключения нагрузки и источника питания связь не устанавливается, конфигурация источника питания остается равной 5 В и максимальному току нагрузки 900 мА. Если связь между нагрузкой и источником питания будет потеряна после того, как она была установлена, источник питания безопасно вернется к конфигурации 5 В и 900 мА.

Уровни мощности, указанные USB Power Delivery

Приложения USB Power Delivery

Преимущество USB Power Delivery в создании единого источника питания, который можно использовать для питания нескольких продуктов, будет иметь наибольшую выгоду, когда продукты сложные и дорогие. Примером приложения для USB Power Delivery является источник питания, который используется для зарядки сотовых телефонов, ноутбуков, планшетов, смарт-часов и наушников. Все эти продукты достаточно сложны, так что дополнительные затраты и сложность связи с источником питания являются приемлемыми. Кроме того, пользователь может находиться в транспортном средстве, комнате, офисе или путешествовать там, где он ожидает получить питание для этих устройств, но сочетание различных мощностей будет трудно предсказать. В этих сценариях источники питания USB Power Delivery будут согласовываться с каждым устройством, чтобы обеспечить надлежащую конфигурацию напряжения и тока в соответствии с требованиями этой нагрузки.

Хотя заявления о том, что USB Power Delivery обеспечит более быструю зарядку аккумуляторов, не являются ошибочными, они могут быть неправильно поняты. Время, необходимое для зарядки аккумулятора, ограничено конструкцией аккумулятора и мощностью источника питания. Внедрение USB Power Delivery сократит время, необходимое для зарядки аккумулятора, если зарядка аккумулятора ограничивается мощностью зарядного устройства, а не конструкцией аккумулятора. USB Power Delivery не сократит время зарядки по сравнению с источником питания с фиксированной выходной мощностью, если выходная мощность обоих источников одинакова.

Продукты, которые могут не подходить для USB Power Delivery, менее сложны и менее дороги с относительно низким энергопотреблением. Менее дорогие продукты могут быть не в состоянии покрыть затраты на проектирование и производство из-за встроенной в устройство функции USB Power Delivery для связи с источником питания. В большинстве приложений, где источник питания выбирается для питания нагрузки, мощность источника питания будет выбираться только в соответствии с требованиями нагрузки. Если был указан источник питания большей мощности, то избыточная мощность источника питания приведет к тому, что размер и стоимость источника питания превысят требуемые. Мощность источника питания USB Power Delivery должна быть рассчитана на максимальную номинальную мощность настраиваемого источника. Система с небольшой нагрузкой, которая может питаться либо от источника питания USB Power Delivery, либо от источника питания меньшего размера, повлечет за собой снижение стоимости и габаритов при использовании источника питания USB Power Delivery.

USB-программируемый источник питания

Протокол USB-программируемого источника питания обеспечивает больший контроль над подачей питания, чем устаревшие протоколы и протоколы USB Power Delivery. В то время как операционный протокол USB Power Delivery определяет, как источники питания USB обеспечивают дискретные уровни напряжения, операционный протокол USB Programmable Power Supply устанавливает возможность управления выходным напряжением и характеристиками тока источника питания на детальном уровне.

Применение программируемого источника питания USB

Типичным приложением, требующим точного контроля напряжения и тока, которое предлагает программируемый источник питания USB, является зарядка аккумуляторов. В традиционной топологии зарядного устройства аккумуляторной батареи источник напряжения подается на схему управления зарядом аккумуляторной батареи, а выход системы обеспечивает надлежащее напряжение и ток для зарядки аккумуляторной батареи. Это хорошо работает, когда характеристики зарядного напряжения и тока батареи стандартизированы, и, таким образом, схема зарядки батареи может иметь стандартную конструкцию. Для приложений, где для батареи требуется индивидуальный профиль напряжения и тока, программируемый источник питания USB может быть лучшим решением. С источником питания с программируемым источником питания USB нагрузка будет контролировать состояние батареи и подавать команды источнику питания, чтобы батарея заряжалась с правильным профилем напряжения и тока. Следует отметить, что когда для зарядки аккумулятора используется конфигурация программируемого источника питания USB, команда разработчиков должна будет спроектировать, внедрить и протестировать алгоритм и схемы зарядки аккумулятора, тогда как при выборе стандартной схемы зарядки аккумулятора поставщик аккумулятора схема зарядки выполнила большинство или все эти задачи.

Заключение

Разъем USB Type-C и спецификация USB Power Delivery значительно расширяют стандарты USB. В то время как внедрение полного стандарта позволит значительно улучшить системы, значительные преимущества также могут быть реализованы при реализации только частей нового стандарта и протокола. Ожидается, что разъем USB Type-C будет использоваться во многих традиционных приложениях подачи питания 5 В с требованиями по току нагрузки 5 А или меньше из-за небольшого размера, улучшенной конструкции и низкой стоимости разъема.

Категории:
Новости отрасли
, Выбор продукта

Вам также может понравиться

Сравнение изолированных и неизолированных преобразователей мощности

Блог о мощности

В чем разница между включенным в список UL и признанным UL?

Блог о мощности

Как измерить пульсации и переходные процессы в источниках питания

Блог о мощности



Есть комментарии по этому посту или темам, которые вы хотели бы видеть в будущем?

Отправьте нам письмо по адресу powerblog@cui. com

Основы USB-C и USB Power Delivery

Архитектура USB (универсальная последовательная шина) используется в качестве стандарта для разъемов и связанных с ними сигналов и подачи питания с 1996 года. За это время в спецификации было внесено множество изменений для повышения производительности систем, использующих эти стандарты. Последние разработки, применимые к конструкциям блоков питания, включают разъем USB Type-C, спецификацию USB Power Delivery и спецификацию USB Programmable Power Supply. Эти усовершенствования делают USB отличным вариантом для подачи питания, тогда как в прошлом USB был в основном поставщиком данных и сигналов с ограниченными возможностями питания. Давайте рассмотрим взаимосвязь между USB Type-C, USB Power Delivery и USB Programmable Power Supply, а также то, как они относятся к блокам питания.

  • USB Type-C: стандартный разъем USB; Преимущества включают компактный, гладкий и обратимый дизайн.
  • USB Power Delivery: Спецификация, которая позволяет нагрузке и источнику питания согласовывать несколько стандартных уровней подачи питания. USB Power Delivery увеличивает мощность USB до 100 Вт и особенно полезна при подаче питания на различные устройства.
  • USB-программируемый источник питания: дополнительная спецификация к USB Power Delivery, описывающая, как нагрузка и источник питания взаимодействуют для повышения уровня подачи питания. Эта функция может быть особенно полезна для зарядки аккумуляторов.

Разъем USB Type-C


Конструкция разъема USB Type-C (также называемая USB-C) симметрична, поэтому его можно подключать в любом случае, то есть нет лицевой стороны вверх или вверх ногами. Это позволяет вставлять вилку быстрее и проще, чем в предыдущих конструкциях USB-разъемов. В предыдущих конструкциях разъема пользователь должен был визуально осмотреть разъем, чтобы определить правильную ориентацию, или пройти через процесс проб и ошибок, вставляя разъем, что создавало легкое, но слишком знакомое неудобство. Еще одна особенность штекера USB Type-C заключается в том, что он имеет закругленные края, и это обеспечивает преимущество самовыравнивающейся характеристики при вставке штекера.

Различные типы разъемов USB. Изображение: CUI Inc.

Вилка USB Type-C предназначена для обеспечения среднего уровня мощности (менее 100 Вт), а характеристики, связанные с небольшой вилкой, позволяют подавать питание на широкий спектр компактных электронных устройств. Одним из преимуществ использования USB-разъемов для подачи питания и сигналов является то, что это сложная конструкция с относительно низкими затратами на разработку. Во многом это связано с эффектом масштаба, полученным благодаря широкому распространению разъема по всему миру. Еще одним преимуществом является то, что система была проверена многими пользователями и конструкциями продуктов, а это означает, что конструкция продемонстрировала свою надежность и оставляет минимальную вероятность возникновения каких-либо неизвестных проблем в работе. Важно отметить, что USB Type-C обычно стоит дороже, чем USB-разъемы предыдущего поколения, из-за сложности и скорости, которую обеспечивает USB Type-C. Однако по мере того, как разъемы USB Type-C становятся все более распространенными, ожидается, что стоимость будет скорректирована соответствующим образом.

Несоответствующие приложения USB Type-C


Дизайнер может выбрать разъем USB Type-C из-за элегантного дизайна, небольшого размера и низкой стоимости, но решить не соответствовать стандартам USB Power Delivery. Вероятность повреждения оборудования несоответствующей конструкцией будет низкой, если напряжение несоответствующего источника питания составляет 5 В, а максимальный ток нагрузки меньше номинального тока разъема 5 А. Существует значительный риск повреждения нагрузки, если несоответствующий источник питания обеспечивает выходное напряжение, превышающее устаревшее напряжение USB, равное 5 В.

Связь между USB Type-C, Power Delivery и 3.

1 Gen 2


Разъем USB Type-C тесно связан с USB 3.1 Gen 2 и USB Power Delivery. Это часто создает путаницу в отношениях между концепциями Type-C, 3.1 Gen 2 и USB Power Delivery. Важно отметить, что хотя эти понятия связаны и дополняют друг друга, они независимы. Устройство или источник питания могут использовать разъем USB и не поддерживать USB 3.1 Gen 2 или USB Power Delivery.

Важно отметить, что протоколы USB могут быть реализованы с разъемами, отличными от указанных разъемов USB. Клиент может выбрать использование данных USB и протоколов питания, чтобы воспользоваться чрезвычайно большими усилиями по разработке и проверке, уже развернутыми USB, но не использовать стандартизированные разъемы USB для создания собственной системы.

Питание через USB


Одной из целей USB является обеспечение функциональной совместимости между соответствующими реализациями старых и новых версий спецификаций. В предыдущих версиях стандартов USB подаваемое напряжение было указано равным 5 В. Стандарт USB Power Delivery допускает подаваемое напряжение 5 В, 9 В.В, 15 В или 20 В и мощностью до 100 Вт.

Эволюция уровней мощности USB. Изображение: CUI Inc.


USB Power Delivery устанавливает рабочие протоколы, чтобы гарантировать, что более высокое напряжение, доступное в последних версиях USB, не повредит устаревшее оборудование, которое было разработано для работы с напряжением 5 В. USB Power Delivery требует, чтобы соответствующее оборудование первоначально подавало на нагрузку 5 В с максимальным током 900 мА, чтобы предотвратить такое повреждение. Связь между нагрузкой и источником питания может тогда установить более высокий максимальный ток нагрузки и большее рабочее напряжение. Если после подключения нагрузки и источника питания связь не устанавливается, то конфигурация источника питания остается равной 5 В и 9 В. Максимальный ток нагрузки 00 мА. Если связь между нагрузкой и источником питания будет потеряна после того, как она была установлена, то источник питания безопасно вернется к конфигурации 5 В и 900 мА.

Уровни мощности, указанные USB Power Delivery. Изображение: CUI Inc.

Приложения для подачи питания через USB


Преимущество USB Power Delivery в создании единого источника питания, который можно использовать для питания нескольких продуктов, будет иметь наибольшую выгоду, когда продукты сложные и дорогие. Примером приложения для USB Power Delivery является источник питания, который используется для зарядки мобильных телефонов, ноутбуков, планшетов, смарт-часов и наушников. Все эти продукты достаточно сложны, так что дополнительные затраты и сложность связи с источником питания являются приемлемыми. Кроме того, пользователь может находиться в транспортном средстве, комнате, офисе или путешествовать там, где он ожидает получить питание для этих устройств, но сочетание различных мощностей будет трудно предсказать. В этих сценариях источники питания USB Power Delivery будут согласовываться с каждым устройством, чтобы обеспечить надлежащую конфигурацию напряжения и тока в соответствии с требованиями этой нагрузки.

Диапазон питания USB по устройствам. Изображение: CUI Inc.


Хотя заявления USB Power Delivery о более быстрой зарядке аккумуляторов не являются неверными, они могут быть неправильно поняты. Время, необходимое для зарядки аккумулятора, ограничено конструкцией аккумулятора и мощностью блока питания. Внедрение USB Power Delivery сократит время, необходимое для зарядки аккумулятора, если зарядка аккумулятора ограничивается мощностью зарядного устройства, а не конструкцией аккумулятора. USB Power Delivery не сократит время зарядки по сравнению с источником питания с фиксированной выходной мощностью, если выходная мощность обоих источников одинакова.

Продукты, которые не могут быть хорошими кандидатами для USB Power Delivery, менее сложны и менее дороги с относительно низкими требованиями к мощности. Менее дорогие продукты могут не покрывать затраты на проектирование и производство из-за встроенной в устройство функции USB Power Delivery для связи с источником питания. В большинстве приложений, где источник питания выбирается для питания нагрузки, мощность источника питания будет выбираться только в соответствии с требованиями нагрузки. Если указан источник питания большей мощности, избыточная мощность источника питания приведет к тому, что размер и стоимость источника питания превысят требуемые. Мощность источника питания USB Power Delivery должна быть рассчитана на максимальную номинальную мощность настраиваемого источника. Система с небольшой нагрузкой, питаемая либо от источника питания USB Power Delivery, либо от источника питания меньшего размера, повлечет за собой снижение стоимости и размера при использовании источника питания USB Power Delivery.

Программируемый блок питания USB


Протокол USB Programmable Power Supply обеспечивает больший контроль над подачей питания, чем устаревшие протоколы и протоколы USB Power Delivery. В то время как операционный протокол USB Power Delivery определяет, как источники питания USB обеспечивают дискретные уровни напряжения, операционный протокол USB Programmable Power Supply устанавливает возможность управления выходным напряжением и характеристиками тока источника питания на детальном уровне.

Применение программируемого источника питания USB


Типичным приложением, требующим детального управления напряжением и током, предлагаемым программируемым источником питания USB, является зарядка аккумуляторов. В традиционной топологии зарядного устройства аккумуляторной батареи источник напряжения подается на схему управления зарядом аккумуляторной батареи. Выход системы обеспечивает правильное напряжение и ток для зарядки аккумулятора. Это хорошо работает, когда характеристики зарядного напряжения и тока батареи стандартизированы, и, таким образом, схема зарядки батареи может быть стандартной конструкции. Программируемый источник питания USB может быть лучшим решением для приложений, где для батареи требуется индивидуальный профиль напряжения и тока зарядки. При использовании источника питания с программируемым источником питания USB нагрузка будет контролировать состояние батареи и подавать команды источнику питания, чтобы батарея заряжалась с правильным профилем напряжения и тока. Следует отметить, что когда для зарядки аккумулятора используется конфигурация с программируемым источником питания USB, команда разработчиков должна разработать, внедрить и протестировать алгоритм и схемы зарядки аккумулятора. Принимая во внимание, что при выборе стандартной схемы зарядки аккумулятора поставщик схемы зарядки аккумулятора выполнил большинство или все эти задачи.

Разъем USB Type-C и спецификация USB Power Delivery значительно улучшают стандарты USB. В то время как внедрение полного стандарта позволит значительно улучшить системы, значительные преимущества также могут быть реализованы при реализации только частей нового стандарта и протокола. Ожидается, что разъем USB Type-C будет использоваться во многих традиционных приложениях подачи питания 5 В с требованиями по току нагрузки 5 А или меньше из-за небольшого размера, улучшенной конструкции и низкой стоимости разъема.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *