Светодиодный прожектор схема: Схемы драйверов светодиодных прожекторов – СамЭлектрик.ру
|Содержание
Ремонтируем светодиодный прожектор своими руками.
Содержание
- 1 Устройство светодиодного прожектора и типовые неисправности
- 2 Проверяем драйвер
- 3 Проверяем светодиодную матрицу
- 4 Что делать если мощность светодиодного модуля неизвестна?
- 5 Ремонт драйвера светодиодного прожектора
- 6 Замена светодиода
Сегодня светодиодные прожектора пользуются повышенным спросом и востребованностью у большого числа людей, потому как имеют массу преимуществ при использовании. Эти устройства выполнены из современных элементов и имеют высокую надежность и эффективность, но и он с течением определенного периода по времени могут сломаться, тогда потребуется выполнить их ремонт. Выполнить ремонт прожектора можно достаточно быстро по времени в зависимости от возникшей неисправности.
Устройство светодиодного прожектора и типовые неисправности
Светодиодные прожекторы считаются такими устройствами, которые сочетают высокие показатели эффективности в работе и экономичности. Эти изделия имеют длительный по времени эксплуатационный ресурс, но иногда требуют квалифицированного ремонта. Чтобы качественно отремонтировать, рекомендуется обращаться в специализированные мастерские, где работают квалифицированные и опытные специалисты. Этот прожектор представляет собой яркий прибор для освещения, которые состоит из определенных деталей и элементов, одними из них являются:
- Специальные светодиоды, которые способны излучать свет.
- Специальные драйвера.
- Корпус.
- Эффективный рассеиватель, который в заметной степени увеличивает КПД устройства.
- Линзы.
Устройство светодиодного прожектора.
Частой поломкой, которая связана с представленным устройством — выход из строя драйвера. Осветительный прибор такими неисправностями быстро теряет яркость и с течением времени перегорает, потому как уменьшается качество передачи тепла в атмосферу. Эта проблема характерна для недорогих по стоимости изделий. Сгорание или же нечеткая работа драйвера является частой проблемой, которая часто встречается у производителей, экономящих на установке качественных радиаторов.
Проверяем драйвер
Ремонт светодиодных прожекторов должен проводиться с использованием современного оборудования и качественного инструмента. Чтобы осуществить проверку работы драйвера, потребуется убедиться, что на него подается электрическое питание 220 В. После этого, потребуется решить, что не работает. Здесь два варианта, первое — неисправность заключается в LED-драйвере. Второй вариант, поломка LED-матрицы. Необходимо сказать, что определение «драйвер» по своей основной сути — это определенный маркетинговый ход производителя, которым обозначается источник тока. Этот источник применяется для определенного устройства, которое рассчитано по току и значениям мощности.
Ремонт светодиодного прожектора своими руками возможно осуществить при относительно несложных неисправностях. Чтобы осуществить проверку драйвера без подключенного светодиода, потребуется подать на его вход напряжение в 220В. После этого, на выходе, при исправном узле, должно возникнуть постоянное напряжение, которое будет по значению больше, чем допустимый предел указанный на самом блоке.
К примеру, когда на блоке установленного драйвера указано напряжение 28 В, тогда при осуществлении действий по его включении «вхолостую», показатели напряжения на выходе будут составлять ориентировочно 40 В. Это объясняется принципом функционирования схемы. Для полного восстановления ремонтируете драйвера светодиодного устройства с использованием качественных элементов, что в заметной степени увеличит показатели срока службы и эффективность оборудования.
Принципиальная схема самодельного прожектора на светодиодах.
Но, представленный способ проверку, не дает 100% гарантии такого факта, что он исправно работает. В некоторых случаях, может потребоваться отремонтировать ЛЕД прожекторов своими руками. Следует отметить, что иногда бывают рабочие блоки драйвера, которые при «холостом» включении, могут показывать различные параметры. Это не всегда указывает на неисправность узла, потому как у разных производителей свои схемы по которым могут работать. Этот момент в обязательном порядке требуется учитывать и полностью понимать, если вам необходимо проверить драйвер. Если мигает светодиодный прожектор или моргает, тогда это может указывать на недостаток питания, поэтому первым делом, следует проверить электрическое питание на выходе. Это делается в самую первую очередь, что позволяет сэкономить время на выполнение указанных мероприятий.
Проверяем светодиодную матрицу
Для проверки работы матрицы, рекомендуется использовать лабораторные БП. При этом, требуется подавать меньшее напряжение, чем требуется для работы этого узла. После этого, необходимо будет измерить показатели тока, то есть узнать, какое его количество потребляет в данный момент по времени наш прибор. При отсутствии неисправностей в таком случае, матрица должна будет загореться. По завершению указанной процедуры, необходимо постепенно повышать напряжение, которое подается на матрицу до номинальных значений. Когда матрица разгорается на полную мощность, тогда можно считать, что этот узел оборудования исправен. Многие люди, занимающиеся подобными работами, упускают важные моменты, которые связаны с правильной установкой различных деталей, что с течением времени приводит к поломке.
Схема-подключение светодиодной матрицы.
Что делать если мощность светодиодного модуля неизвестна?
Иногда случаются такие ситуации, когда показатели мощности установленного модуля не указаны. Поэтому, аппарат сложно правильно подобрать для решения поставленных задач, а также сложно будет в будущем подобрать адаптер. Отмечаем такой момент, что в матрицах применяются диоды, которые имеют показатели мощности в 1 Вт, а их ток равняется 320 мА. Если в матрице 9 постоянно включенных диодов, а ток один по 320 мА и напряжение 3,1 В. Напряжение будет около 29 В.
Ремонт драйвера светодиодного прожектора
При ремонтной операции драйвера светодиодного прожектора, необходимо будет обращать внимание на все элементы, которые присутствуют в схеме. Он должен выдавать определенные значения постоянного напряжения, которое используется для питания установленных диодов. При ремонте этой системы, обращают внимание на силовые детали, которые имеют радиаторы. Связано это с тем, что при плохом охлаждении, определенные элементы драйвера могут быстро выходить из строя и их требуется заменить на новые и более качественные. В этом случае полезно подключение и схема диммера, что сэкономит время на данную процедуру.
Электрическая схема драйвера.
Замена светодиода
При выполнении работ, связанных с заменой светодиодов, необходимо обращать повышенное внимание на параметры этого элемента, они должны точно соответствовать тем, которые прописаны у неисправных элементов. Это поможет правильно сделать замену и стабильную работу прожектора на долгий отрезок по времени. Рекомендуется приобретать эти детали от известных производителей, потому как качество дешевых светодиодов не лучшее.
Неисправность светодиодного прожектора , блок питания не включается.
Если требуется оперативный ремонт оборудования, тогда можно приобрести в любом магазине, который торгует светодиодами необходимые элементы. Когда люди занимаются ремонтом современных систем на постоянной основе, тогда имеется отличная возможность приобретать необходимые элементы для замены при помощи магазинов, расположенных в интернете, что удобно и практично
youtube.com/embed/88aTxISuM4Y?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>
Cветодиодный прожектор, устройство, ремонт. — Радиомастер инфо
от admin
Рассказано с пояснениями о двух способах восстановления светодиодных прожекторов.
Первый способ восстановления — замена неисправных деталей.
Прожектор светодиодный мощностью 30 Вт полностью перестал работать.
Корпус герметичный, разбирается просто откручиванием 4х винтов по периметру.
Вид прожектора со снятой крышкой.
После снятия отражателя получаем доступ к деталям.
Внешних повреждений не видно.
Подключаем к сети 220В и измеряем напряжение прямо на контактах питания светодиодной матрицы. Оно равно 0. Должно быть около 30 В, как написано на корпусе драйвера.
Отпаиваем провода и проверяем светодиоды. Их 10 групп по 6 светодиодов. В каждой группе светодиоды соединены параллельно, а сами группы последовательно. Напряжение питания одного светодиода около 3 В, 10 групп последовательно будет около 30 В. Вот такое напряжение и должен обеспечивать драйвер.
Из 60 светодиодов при проверке не светит только 1. Это не окажет существенного влияния на работу прожектора, поэтому переходим к драйверу.
Драйвер приклеен к корпусу. Его металлический корпус можно разогнуть, чтобы освободить плату с деталями.
После очистки от герметика и гари получаем доступ к деталям. Часть платы выгорела. Но пробитыми оказались только диоды входного мостика. Микросхема и остальные детали не коротят при прозвонке.
Выпаиваем неисправные детали, очищаем плату, обугленные участки платы нужно удалить, через них может быть утечка. Промываем все спиртом. Ставим новые диоды. У меня под рукой 1N4007. Они конечно больше по габаритам, но места для их установки хватит. По обратному напряжению и току они подходят с запасом. Вот так они были запаяны.
Схема подключения показана ниже. Резистор 10 Ом на 2 Вт установлен снаружи драйвера. Он нужен для ограничения тока заряда конденсатора после диодного моста при первом включении. Это повысит надежность. Конденсатор 22 мкф на 400 В в схеме уже был, его не менял.
Первое включение через лампу 220В 100Вт. Вдруг еще что-то неисправно, лампа ограничит ток и потери будут минимизированы.
Все работает нормально.
Отключаем лампу подключаем драйвер в сеть через резистор 10 Ом. Проверяем еще раз. Измеряем ток. При напряжении 30 В ток равен 0,61 А.
Так как герметик мы повредили, покрываем плату и детали шеллаком или электротехническим лаком. Прожектор светодиодный работает на улице и это защитит схему от конденсата и соответственно, от выхода из строя. Собираем корпус светодиодного прожектора в обратном порядке. Тщательно устанавливаем резиновую прокладку, защищающую внутренности прожектора от дождя.
Спустя несколько недель в ремонт поступил еще один прожектор такого же типа.
Его пришлось восстанавливать вторым способом, о котором и пойдет речь ниже.
Он тоже не светится, напряжение на контактах матрицы 0, как и в предыдущем случае.
Отпаял контакты, проверил драйвер без нагрузки, работает, выдает 52В.
Стал проверять светодиоды на замыкание, замыкают все 10 групп в которых светодиоды соединены параллельно, по 6 штук. Естественно, нужно выпаивать, чтобы найти те, которые замыкают. Только феном паяльной станции выпаивать трудно. Положил матрицу на утюг, он греет до 115 °C, помогая феном паяльной станции температура которого выставлена около 220°C, быстро выпаял все светодиоды.
Выпаянные светодиоды проверил. Замыкает половина. Запаял на плату через один, в надежде получить прожектор с мощностью меньше на 50%. Включил, оказалось, драйвер не держит нагрузку, светодиоды мигают и светятся неравномерно. От лабораторного блока питания при 30В светодиоды не мигают, но яркость свечения у всех разная, наверное они повреждены.
Дальше возиться уже невыгодно. Посмотрел сколько стоит новый светодиодный прожектор такого типа или аналогичный. Цена чуть больше $10. Просматривая материалы по этой теме увидел матрицы светодиодные, уже адаптированные под 220В. Их цена на близкую мне мощность около $3,5. Это в три раза ниже стоимости нового прожектора. Приобрести матрицу можно здесь.
Ее установочный размер меньше чем той, которая стояла, но в этом корпусе под матрицей уже были отверстия, которые в точности совпали с нужными для новой матрицы. Видимо корпус адаптирован и под такой вариант.
Но, если бы их и не было, просверлить четыре отверстия в алюминиевом корпусе и нарезать резьбу на 3мм не представляется сложным. Главное, под новую матрицу положить термопасту. Если старая не засохла, ее можно использовать. На матрице три контакта. Два обозначены L и L, а один N. L и L между собой соединены, легко просматривается по дорожкам. 220В В нужно подавать на N и любой L. Весь ремонт сводится к тому, чтобы прикрутить новую матрицу и подпаять два сетевых провода.
Ремонт светодиодного прожектора с заменой матрицы мне понравился. Его можно выполнить минут за 30. Так что, рекомендую. Да и выгода в три раза, между покупкой нового прожектора и матрицы, аргумент весомый.
Материал статьи продублирован на видео:
Подключение светодиодных прожекторов с регулируемым током: что можно и чего нельзя делать — служба поддержки клиентов
Некоторые светодиодные светильники регулируются по току (например, 350 мА, 500 мА, 700 мА и 1050 мА). Они требуют постоянного тока. Чтобы превратить сетевое напряжение 230 В в ток, нужен отдельный блок питания, блок питания с регулируемым током.
Должны быть подключены последовательно
Светодиоды, управляемые по току, нельзя подключать под напряжением! Кроме того, они всегда должны быть подключены в последовательной цепи. В последовательных цепях есть только один путь тока. Ток входит через + и покидает прожектор через +, чтобы продолжить свой путь к следующему прожектору. Ток течет в одном направлении через все прожекторы до тех пор, пока все они не окажутся под током.
Внешний источник питания необходимо настроить на количество прожекторов и их мощность. При постоянном токе напряжение будет равномерно распределяться по разным точкам.
Моделирование настройки
Попробуем упростить дело на примере. В этой конфигурации мы собираемся установить три светодиодных прожектора мощностью 3 Вт каждый (AB 10217-03-WW-25). Для прожекторов требуется непрерывный ток 700 мА.
Расчет необходимого напряжения Светодиодный прожектор
Исходя из формулы для электрической мощности, мы можем рассчитать напряжение, необходимое для каждого отдельного прожектора. Мощность равна вольтам на ампер.
Формула для электрической мощности:
Перевернув формулу, мы можем рассчитать напряжение на прожектор:
Каждому отдельному светодиодному прожектору требуется 4,29 В для поддержания постоянного тока 700 мА. В сумме на три прожектора потребуется 12,87В (= 3 х 4,29В). Общее напряжение прожекторов должно быть в пределах досягаемости источника питания.
Так что в данном случае вполне подойдет блок питания светодиода на 700мА с выходом от 9 до 30В. Этот блок питания имеет минимальное выходное напряжение 9 В и максимальное выходное напряжение 30 В. Общее напряжение, необходимое для прожекторов, не может быть больше или меньше выходного уровня источника питания.
Блок питания выдает слишком большое напряжение для количества прожекторов:
Допустим, вы хотите подключить только один прожектор мощностью 3 Вт, вам потребуется только 4,29 В. это ниже минимального напряжения источника питания 9 В. Это приведет к дефекту прожектора, потому что напряжение слишком высокое.
Вся цепь прожекторов всегда должна быть проверена сразу. Когда установщик проверяет блок питания с каждым прожектором отдельно, прожектор, которому требуется всего 4,29 В, сразу же получает полное минимальное напряжение 9 В. Это слишком много, поэтому пятно будет работать со сбоями.
Источник питания выдает слишком мало напряжения для количества прожекторов:
При подключении 8 таких прожекторов мощностью 3 Вт к одному источнику питания потребуется общий ток 34,23 В (= 8 x 4,29 В). Это выше, чем максимальное напряжение источника питания. Светодиодные прожекторы не достигают своей полной светоотдачи. Другими словами, они будут выглядеть «тусклыми».
Минимальное и максимальное количество прожекторов на блоке питания
Для этого блока питания 700 мА (9 – 30 В) необходимо установить как минимум три таких прожектора мощностью 3 Вт. Максимальная мощность блока питания составляет шесть таких прожекторов. Если вы хотите установить их больше, вам понадобится блок питания с более высокой выходной мощностью.
Во время установки светодиодных прожекторов с регулируемым током блок питания светодиодов ни в коем случае не должен находиться под напряжением ! Пренебрегите этим, и вы рискуете повредить светодиоды. Вы даже потеряете гарантию, сделав это. В случае сомнений обратитесь к профессиональному электрику.
Когда блоки питания светодиодов находятся под напряжением, они начинают искать количество напряжения, которое им необходимо распределить. Когда прожекторы не подключены, большинство источников питания будут продолжать наращивать напряжение до максимального значения.
Если к этому полностью заряженному блоку питания подключить светодиодный прожектор, он сразу же получит максимальное выходное напряжение. Если оно выше, чем максимальное напряжение светодиодного прожектора, светодиод выйдет из строя. Для этого требуется всего доля секунды.
Поэтому при установке светодиодных прожекторов крайне важно отключить напряжение на блоке питания.
Неправильная установка:
Предположим, мы поставили источник питания на 700 мА под напряжение. Затем мы подключаем светодиодный прожектор мощностью 7 Вт. Прожектор сразу же получит полную мощность 49 В. Максимальное напряжение для этого прожектора мощностью 7 Вт составляет всего 10 В (= 7 Вт / 0,7 А), поэтому светодиод будет поврежден.
Вам необходимо подключить все ваши светодиоды заранее, до подачи напряжения на блок питания. Таким образом, источник питания может подняться до требуемого напряжения.
Электропитание можно включать только на первичной стороне, т.е. до подачи сетевого напряжения 230В. В противном случае светодиод выйдет из строя, как и в ситуации выше.
Защищенные блоки питания для светодиодов:
Некоторые блоки питания защищены от вышеуказанного явления. Когда этот тип источника питания находится под напряжением, а прожекторы не подключены, они не будут выдавать свое максимальное напряжение. Вместо этого они вообще не будут распределять напряжение.
Блок питания начнет подавать напряжение только при подключении прожекторов и перезапуске блока питания.
Объяснение серий и параллельных цепей
Надеемся, что те, кто ищет практическую информацию об электрических цепях и подключении светодиодных компонентов, первыми нашли это руководство. Однако вполне вероятно, что вы уже читали страницу Википедии о последовательных и параллельных схемах здесь, возможно, несколько других результатов поиска Google по этому вопросу, и все еще неясны или хотите получить более конкретную информацию, касающуюся светодиодов. В течение многих лет предоставления обучения, обучения и объяснения концепции электронных схем клиентам мы собрали и подготовили всю важную информацию, необходимую, чтобы помочь вам понять концепцию электрических схем и их связь со светодиодами.
Во-первых, не позволяйте электрическим цепям и проводке светодиодных компонентов звучать пугающе или запутанно — правильное подключение светодиодов может быть простым и понятным, если вы будете следовать этому сообщению. Давайте начнем с самого основного вопроса…
Какой тип схемы мне следует использовать?
Одно лучше другого…Последовательное, параллельное или последовательное/параллельное?
Требования к осветительным приборам часто диктуют, какой тип схемы можно использовать, но, если есть выбор, наиболее эффективным способом запуска мощных светодиодов является использование последовательной схемы с драйвером светодиода постоянного тока. Запуск последовательной цепи помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой разгон.
Не волнуйтесь, параллельная схема по-прежнему является приемлемым вариантом и часто используется; позже мы опишем этот тип схемы.
Однако сначала давайте рассмотрим последовательную цепь :
Часто называемую «гирляндной цепью» или «петлей», ток в последовательной цепи следует по одному пути от начала до конца с анодом (положительным ) второго светодиода, подключенного к катоду (минусу) первого. На изображении справа показан пример: чтобы подключить последовательную цепь, как показано, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному второй светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее соединение светодиода идет от отрицательного контакта светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.
Вот несколько пунктов для справки о последовательной цепи:
- Один и тот же ток протекает через каждый светодиод
- Общее напряжение цепи равно сумме напряжений на каждом светодиоде
- Если один светодиод выйдет из строя, вся схема не будет работать
- проще подключать и устранять неполадки
- Изменение напряжения на каждом светодиоде допустимо
Цепи серии
Подача питания на последовательную цепь:
Концепция петли уже не проблема, и вы определенно можете понять, как ее подключить, но как насчет ПИТАНИЕ последовательная цепь.
Второй пункт списка выше гласит: «Общее напряжение цепи равно сумме напряжений на каждом светодиоде» . Это означает, что вы должны обеспечить, как минимум, сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L с током 1050 мА и прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиода равна 8,85 В ДК . Таким образом, теоретически минимальное входное напряжение, необходимое для работы этой схемы, составляет 8,85 В.
В начале мы упомянули об использовании драйвера светодиодов постоянного тока, потому что эти модули питания могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но поддерживать одинаковый выходной ток. Для более глубокого понимания драйверов светодиодов загляните сюда. Но в целом важно убедиться, что входное напряжение драйвера может обеспечить выходное напряжение, равное или превышающее 8,85 В, которые мы вычислили выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует дополнительных 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вам вводить меньше.
Надеюсь, вы сможете найти драйвер, который сможет реализовать вашу светодиодную схему с последовательными диодами, однако есть обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для последовательного питания нескольких светодиодов, или может быть слишком много светодиодов для последовательного включения, или вы просто хотите ограничить стоимость драйверов светодиодов. Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.
Параллельная цепь:
Если последовательная цепь получает одинаковый ток для каждого светодиода, параллельная цепь получает одинаковое напряжение для каждого светодиода, а общий ток для каждого светодиода равен общему выходному току драйвера, деленному на количество параллельных светодиоды.
Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную схему светодиодов, и это должно помочь связать идеи воедино.
В параллельной схеме все положительные соединения соединяются вместе и возвращаются к положительному выходу драйвера светодиодов, а все отрицательные соединения соединяются вместе и возвращаются к отрицательному выходу драйвера. Давайте посмотрим на это на изображении справа.
В примере, показанном с выходным драйвером 1000 мА, каждый светодиод получит 333 мА; общий выход драйвера (1000 мА), разделенный на количество параллельных цепочек (3).
Вот несколько пунктов для справки о параллельной схеме:
- Напряжение на каждом светодиоде одинаковое
- Общий ток представляет собой сумму токов через каждый светодиод
- Общий выходной ток распределяется по каждой параллельной цепи
- В каждой параллельной цепочке требуются точные значения напряжения, чтобы избежать перегрузки по току
Теперь давайте немного повеселимся, объединим их вместе и наметим Series/Parallel Circuit :
Как следует из названия, последовательно-параллельная цепь объединяет элементы каждой цепи. Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L по 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило № 2 из пунктов списка последовательной схемы доказывает, что 12 В постоянного тока недостаточно для работы всех 9 светодиодов последовательно (9 x 2,98 = 26,82 В постоянного тока ). Однако 12В постоянного тока достаточно для запуска трех последовательных (3 x 2,98 = 8,94 В постоянного тока ). И из правила параллельной схемы номер 3 мы знаем, что общий выходной ток делится на количество параллельных цепочек. Таким образом, если бы мы использовали BuckBlock на 2100 мА и имели три параллельные цепочки из 3 светодиодов последовательно, то 2100 мА были бы разделены на три, и каждая серия получила бы 700 мА. Пример изображения показывает эту настройку.
Если вы пытаетесь собрать светодиодную матрицу, этот инструмент планирования светодиодных цепей поможет вам решить, какую схему использовать. На самом деле это дает вам несколько различных вариантов различных последовательных и последовательно-параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиода и количество светодиодов, которые вы хотите использовать.
Неисправность нескольких цепочек светодиодов:
При работе с параллельными и последовательно-параллельными цепями следует помнить, что если цепочка или светодиод перегорают, светодиод/цепочка затем отключается от цепи, поэтому лишние текущая нагрузка, которая шла на этот светодиод, затем будет распределена на остальные. Это не является серьезной проблемой для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы, состоящей всего из 2 светодиодов/цепочек? Затем ток для оставшегося светодиода/цепочки будет удвоен, что может быть более высокой нагрузкой, чем может выдержать светодиод, что приведет к перегоранию и разрушению вашего светодиода! Убедитесь, что вы всегда помните об этом, и старайтесь иметь настройку, которая не испортит все ваши светодиоды, если один из них перегорит.