Неодимовые магниты для чего: Где применяют и используют неодимовые магниты?

Где применяют и используют неодимовые магниты?

Магниты в последнее время становятся все более популярными, о чем свидетельствуют многочисленные запросы наших клиентов, которые в свою очередь используют их в быту, в промышленности, для изготовления различной продукции (от сувениров до электротехники).

Магниты бывают разных видов: обычные ферритовые (популярность которых все падает, так как они слабее аналогов и быстрее размагничиваются), самариевые (используются в промышленности) и неодимовые. Последние получают все большую известность и пользуются постоянным спросом.

Часто люди называют неодимовый магнит как: супермагнит, вечный магнит, сверхмагнит, мощный магнит, редкоземельный магнит, сильный магнит, правильный магнит, магнит неодим-железо-бор, магнит Nd-Fe-B. Некоторые по ошибке запрашивают ниобиевый магнит, дидимовый магнит, неомагнит, неомидиевый магнит, нимидьевый магнит, неедимовый магнит, неодиновый магнит, никодимовый магнит, неодиемовый магнит, ниодиевый магнит, ниадимовый магнит, дионитовый магнит, еодиновый магнит и даже демонитовый магнит!

Правильное название все-таки неодИмовый магнит, так как в его состав входит редкоземельный металл неодим (Nd), благодаря которому магниты и получают свои уникальные свойства: они очень мощные (даже если у них небольшой размер), не подвержены размагничиванию (теряют всего 1% силы за сто лет). Кроме неодима в состав таких магнитов входит железо (Fe) и бор (B).

Неодимовый магнит можно использовать в качестве универсального крепления для сувениров, мебели, портьер. Неодимовые магниты используют как поисковые, а также в электронике и даже в качестве игрушки (неокубы).

Чтобы неодимовые магниты служили вам долго, их делают со специальным покрытием: это либо никелевое покрытие, либо цинковое. Чаще всего используют никелевое покрытие, однако если вы собираетесь использовать магнит при температуре выше 100°С, либо в агрессивной среде, то советуем вам приобрести магнит с цинковым покрытием.

Влияние магнитов на здоровье

Неодимовый магнит безопасен для здоровья, а некоторые утверждают, что даже полезен, однако пока этому нет весомых доказательств. Однако стоит учесть, что пользоваться сильными неодимовыми магнитами нужно с осторожностью людям, использующим кардиостимулятор.

Неодимовые магниты могут быть разнообразной формы. Наиболее распространенные: диск, блок (параллелепипед), кольцо. Сила неодимового магнита зависит от двух факторов: количество неодима в составе неодим-железо-бор и величина магнита. Чем магнит больше, тем он будет сильнее. Чем больше в его составе неодима, тем более ярко будут выражены его свойства. По количеству неодима магниты делятся на классы, более подробно с этим делением можно познакомиться здесь.

Читайте также:

Характеристики неодимовых магнитов

Что значит класс магнита?

Как рассчитать силу магнита?

Правила работы с магнитами

 

Как используют неодимовый магнит? Подскажет Вам Статьи о магнитах

МЫ ПРОДАЁМ МАГНИТЫ ТОЛЬКО —

ТОЧНЫЙ РАЗМЕР

Способы оплаты

Распечатать страницу

Главная \ О Магнитах \ Как используют неодимовый магнит?

« Назад

Неодимовый магнит — это постоянный редкоземельный магнит, который состоит из сплава бора, неодима и железа. На сегодняшний день это одни из самых мощных магнитов. Они обладают достаточно большим магнитным диапазоном, при этом не требуют никаких электроэнергетических затрат. Также такие магниты обладают высокой стойкостью к размагничиванию.

Как используют неодимовый магнит?

Благодаря своим качествам и свойствам неодимовый магнит очень востребован и нашел свое применение в различных сферах медицины, промышленности, а также в быту и электронике.

В промышленности данный вид магнитов используется для создания магнитного поля заграждения, которое не допускает поломок дорогостоящего оборудования (при попадании различных металлических предметов в движущие части устройств) и защищает от инородных примесей изготавливаемую продукцию.

Также неодимовые магниты применяются при изготовлении компьютерных жестких дисков, для управления движением считывающих головок, в CD- приводах, в теле и видеоаппаратуре. В медицине такие магниты используются в аппаратах для магнитно-резонансной томографии.

Популярность неодимовых магнитов постоянно растет, а область их применения постоянно расширяется. Так неодимовые магниты нашли свое применения и в бытовых условиях.

Данный сверхмощный магнит можно использовать в качестве фиксатора на кухне, или же в подсобном помещении для более удобного, упорядоченного размещения различных кухонных принадлежностей и хозяйственных инструментов. Также такие магниты используются при изготовлении различных сувенирных магнитов. Данный вид магнитов используется для изготовления индукционных датчиков, используемых в холодильниках, входных дверях, а также в противоугонной сигнализации.

Неодимовые магниты, размещенные в различных поролоновых насадках, дают возможность очистить от загрязнений стеклянные поверхности в недоступных местах, к примеру, в аквариумах или застекленных лоджиях.

Также существуют поисковые магниты, которые предназначены для поиска различных ферримагнитных предметов (чугун, сталь, никель и т.п.) в естественных водоемах (озера, реки, болота), а также в колодцах, шахтах или других больших емкостях с водой или другой жидкостью.

Неодимовые магниты обладают огромной мощность, имеют уникальные свойства и характеристики благодаря чему найдут себе еще не одно применения в различных сферах человеческой жизнедеятельности.

Более подробную информацию применения неодимовых магнитов Вы можете получить позвонив в «Магазин Магнитов».

Хотите купить качественные неодимовые магниты по разумной цене, более подробную информацию применения неодимовых магнитов, а также стоимости неодимовых магнитов Вы можете получить обратившись в «Магазин Магнитов».

Использование неодимовых магнитов в здравоохранении и их влияние на здоровье

1. Du X, Graedel TE. Мировые запасы редкоземельных элементов, используемых в постоянных магнитах NdFeB. J Ind Ecol. 2011;15:836–43. [Google Scholar]

2. Colbert AP, Wahbeh H, Harling N, Connelly E, Schiffke HC, Forsten C, et al. Терапия статическим магнитным полем: критический обзор параметров лечения. Комплемент на основе Evid Alternat Med. 2009; 6: 133–9. [Бесплатная статья PMC] [PubMed] [Google Scholar]

3. Noar JH, Evans RD. Редкоземельные магниты в ортодонтии: обзор. Бр Дж Ортод. 1999;26:29–37. [PubMed] [Google Scholar]

4. Тансер К. Магниты и их применение в ортодонтии. GÜDişHek Fak Derg. 2006; 23:131–135. [Google Scholar]

5. Ba X, Hadjiargyrou M, DiMasi E, Meng Y, Simon M, Tan Z, et al. Роль умеренных статических магнитных полей в биоминерализации остеобластов на пленках из сульфированного полистирола. Биоматериалы. 2011; 32:7831–8. [PubMed] [Google Scholar]

6. Cunha C, Panseri S, Marcacci M, Tampieri A. Оценка воздействия приложения статического магнитного поля умеренной интенсивности на остеобластоподобные клетки человека. Am J Biomed Eng. 2012;2:263–8. [Академия Google]

7. Mayrovitz HN, Groseclose EE. Влияние статического магнитного поля любой полярности на микроциркуляцию кожи. Микроваск Рез. 2005; 69: 24–7. [PubMed] [Google Scholar]

8. Yan Y, Shen G, Xie K, Tang C, Wu X, Xu Q и др. Вейвлет-анализ острого воздействия статического магнитного поля на кожный кровоток в состоянии покоя у ногтевой стенки у молодых мужчин. Микроваск Рез. 2011; 82: 277–83. [PubMed] [Google Scholar]

9. Strieth S, Strelczyk D, Eichhorn ME, Dellian M, Luedemann S, Griebel J, et al. Статические магнитные поля вызывают снижение кровотока и адгезию тромбоцитов в микрососудах опухоли. Рак Биол Тер. 2008; 7: 814–9.. [PubMed] [Google Scholar]

10. Morris CE, Skalak TC. Хроническое воздействие статического магнитного поля изменяет расширение микрососудов в результате оперативного вмешательства. J Appl Physiol (1985) 2007; 103: 629–36. [PubMed] [Google Scholar]

11. Wang SP, Yan XP, Xue F, Dong DH, Zhang XF, Ma F, et al. Быстрая магнитная реконструкция воротной вены с аллогенными кровеносными сосудами у собак. Гепатобилиарная система поджелудочной железы Dis Int. 2015;14:293–9. [PubMed] [Google Scholar]

12. Lee C, Choi EK, Kong HJ, Choy YB, Kim HC, Oh S. Создание очагов радиочастотной абляции с использованием биполярных катетеров с магнитной связью. Пейсинг Клин Электрофизиол. 2011;34:934–8. [PubMed] [Google Scholar]

13. Оливьеро А., Карраско-Лопес М.С., Камполо М., Перес-Боррего Ю.А., Сото-Леон В., Гонсалес-Роса Дж.Дж. и др. Исследование безопасности транскраниальной стимуляции статическим магнитным полем (tSMS) коры головного мозга человека. Мозговой стимул. 2015; 8: 481–5. [PubMed] [Google Scholar]

14. Jin Y, Phillips B. Пилотное исследование использования синхронизированной транскраниальной магнитной стимуляции (sTMS) на основе ЭЭГ для лечения большой депрессии. БМС Психиатрия. 2014;14:13. [Бесплатная статья PMC] [PubMed] [Google Scholar]

15. Leuchter AF, Cook IA, Feifel D, Goethe JW, Husain M, Carpenter LL, et al. Эффективность и безопасность низкопольной синхронизированной транскраниальной магнитной стимуляции (sTMS) для лечения большой депрессии. Мозговой стимул. 2015; 8: 787–94. [PubMed] [Google Scholar]

16. Барметтлер А., Ниссанка Н., Розенблатт М.И., Рао Р., Липсон Д., Лелли Г.Дж., мл. Магнитные системы для тарзорафии. Ophthal Plast Reconstr Surg. 2014;30:305–8. [PubMed] [Google Scholar]

17. Пинкертон Дж. В., Стовалл Д. В., Кайтлингер Р. С. Достижения в лечении симптомов менопаузы. Женское здоровье (Лондон), 2009 г.;5:361–84. [PubMed] [Google Scholar]

18. Ciftci Z, Deniz M, Ciftci HG, Ozdemir DN, Isik A, Gultekin E. Магнитный контроль отверстия голосовой щели в модели гортани овцы Ex Vivo: предварительное исследование. Джей Голос. 2016;30:621–5. [PubMed] [Google Scholar]

19. Leesungbok R, Ahn SJ, Lee SW, Park GH, Kang JS, Choi JJ. Влияние статического магнитного поля на формирование кости вокруг крупнозернистого титанового имплантата, подвергнутого пескоструйной обработке и протравленного кислотой. J Оральный имплантат. 2013; 39: 248–55. [Академия Google]

20. Panseri S, Russo A, Sartori M, Giavaresi G, Sandri M, Fini M, et al. Изменение архитектуры костных каркасов in vivo с помощью постоянных магнитов для облегчения фиксации магнитных каркасов. Кость. 2013; 56: 432–9. [PubMed] [Google Scholar]

21. Richmond SJ, Brown SR, Campion PD, Porter AJ, Moffett JA, Jackson DA, et al. Терапевтические эффекты магнитных и медных браслетов при остеоартрите: рандомизированное плацебо-контролируемое перекрестное исследование. Дополнение Ther Med. 2009; 17: 249–56. [PubMed] [Академия Google]

22. Гривз С.Дж., Харлоу Т.Н. Исследование действия слабых магнитов в качестве подходящего плацебо в испытаниях магнитотерапии. Дополнение Ther Med. 2008; 16: 177–80. [PubMed] [Google Scholar]

23. Колберт А.П., Марков М.С., Карлсон Н., Грегори В.Л., Карлсон Х., Элмер П.Дж. Терапия статическим магнитным полем при синдроме запястного канала: технико-экономическое обоснование. Arch Phys Med Rehabil. 2010;91:1098–104. [Бесплатная статья PMC] [PubMed] [Google Scholar]

24. Macfarlane GJ, Paudyal P, Doherty M, Ernst E, Lewith G, MacPherson H, et al. Рабочая группа Arthritis Research UK по дополнительным и альтернативным методам лечения ревматических заболеваний. Систематический обзор доказательств эффективности дополнительных и альтернативных методов лечения ревматических заболеваний: ревматоидного артрита. Ревматология (Оксфорд) 2012;51:1707–13. [PubMed] [Академия Google]

25. Macfarlane GJ, Paudyal P, Doherty M, Ernst E, Lewith G, MacPherson H, et al. Рабочая группа Arthritis Research UK по дополнительным и альтернативным методам лечения ревматических заболеваний. Систематический обзор доказательств эффективности дополнительных и альтернативных методов лечения ревматических заболеваний: остеоартрита. Ревматология (Оксфорд) 2012;51:2224–33. [PubMed] [Google Scholar]

26. Микски А.Е., Хейден М.В. Влияние статической магнитотерапии на выздоровление от отсроченной мышечной болезненности. Физ тер спорт. 2005; 6: 188–9.4. [Google Scholar]

27. Warnick P, Chopra SS, Raubach M, Kneif S, Hünerbein M. Интраоперационная локализация скрытых колоректальных опухолей во время лапароскопической хирургии с помощью магнитных кольцевых маркеров — пилотное исследование. Int J Colorectal Dis. 2013; 28: 795–800. [PubMed] [Google Scholar]

28. Jamshidi R, Stephenson JT, Clay JG, Pichakron KO, Harrison MR. Магнамоз: магнитный компрессионный анастомоз по сравнению с методами швов и скоб. J Pediatr Surg. 2009;44:222–8. [PubMed] [Академия Google]

29. Пичакрон К.О., Джелин Э.Б., Хиросе С., Курран П.Ф., Джамшиди Р., Стефенсон Дж.Т. и др. Magnamosis II: Магнитный компрессионный анастомоз для минимально инвазивной гастроеюноанастомоза и еюноеюноанастомоза. J Am Coll Surg. 2011; 212:42–9. [PubMed] [Google Scholar]

30. Падилья Б.Е., Домингес Г., Миллан С., Мартинес-Ферро М. Использование магнитов при односторонней лапароскопической хирургии пуповины. Семин Педиатр Хирург. 2011;20:224–31. [PubMed] [Google Scholar]

31. Стрикленд М., Розенфилд Д., Фекто А. Магнитные травмы инородного тела: опыт большой детской больницы. J Педиатр. 2014; 165:332–5. [PubMed] [Академия Google]

32. Бусварош А., Бонта С., Гилгер М., Ноэль Р.А. Защита здоровья детей: как Североамериканское общество детской гастроэнтерологии, гепатологии и питания приняло меры против мощных магнитов. J Педиатр. 2014;164:4–5.e1. [PubMed] [Google Scholar]

33. Айкан А., Гузей С., Авшар С., Озтюрк С. Повреждение неодимовым магнитом, вызвавшее перелом носа: клинический случай. Ulus Travma Acil Cerrahi Derg. 2015; 21: 231–4. [PubMed] [Google Scholar]

34. Lamkowsky MC, Geppert M, Schmidt MM, Dringen R. Индуцированное магнитным полем ускорение накопления магнитных наночастиц оксида железа культивируемыми астроцитами головного мозга. J Biomed Mater Res A. 2012;100:323–34. [PubMed] [Академия Google]

35. Freitas ER, Santos RL, Lima EC, Guillo LA. Бесфидерная культура эмбриональных стволовых клеток человека линии BG01V/hOG с использованием системы магнитное поле-магнитные наночастицы. Биомед Фармаколог. 2013;67:17–21. [PubMed] [Google Scholar]

36. Uthamaraj S, Tefft BJ, Klabusay M, Hlinomaz O, Sandhu GS, Dragomir-Daescu D. Разработка и проверка нового ферромагнитного стента из чистого металла, способного захватывать и удерживать эндотелиальные клетки. Энн Биомед Инж. 2014;42:2416–24. [PubMed] [Академия Google]

37. Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Сфокусированное магнитное нацеливание стволовых клеток на сетчатку с использованием суперпарамагнитных наночастиц оксида железа. Трансплантация клеток. 2012;21:1137–48. [PubMed] [Google Scholar]

38. Klostergaard J, Seeney CE. Магнитные нановекторы для доставки лекарств. Наномедицина. 2012;8(Приложение 1):S37–50. [PubMed] [Google Scholar]

39. Oechtering J, Kirkpatrick PJ, Ludolph AG, Hans FJ, Sellhaus B, Spiegelberg A, et al. Магнитные микрочастицы для эндоваскулярного лечения аневризм: экспериментальные результаты in vitro и in vivo. Нейрохирургия. 2011; 68: 1388–97. [PubMed] [Google Scholar]

40. Lee SH, Park CK. Влияние намагниченного наполнителя на целостность мембраны сперматозоидов и развитие ооцитов, оплодотворенных in vitro жидкой спермой хряка. Anim Reprod Sci. 2015; 154:86–94. [PubMed] [Google Scholar]

41. Bondemark L, Kurol J, Hallonsten AL, Andreasen JO. Привлекательные магниты для ортодонтической экструзии сломанных корневых коронок зубов. Am J Orthod Dentofacial Orthop. 1997; 112:187–93. [PubMed] [Google Scholar]

42. Yiu EY, Fang DT, Chu FC, Chow TW. Коррозионная стойкость железоплатиновых магнитов. Джей Дент. 2004; 32: 423–9.. [PubMed] [Google Scholar]

Для чего используются неодимовые магниты?

О неодимовых магнитах и ​​их применении

Neodymi- какой ?! Если вы просматриваете наш веб-сайт, вы, несомненно, интересуетесь магнитами, но, возможно, вы не слышали о неодимовых редкоземельных магнитах. Неодимовый магнит — это самый сильный из известных типов постоянных магнитов, и мы поставляем его для различных промышленных и коммерческих целей здесь, в Adams Magnetic Products. Давайте погрузимся немного глубже и узнаем больше об этих чрезвычайно сильных магнитах и ​​о том, как их можно использовать.

Что такое неодимовые редкоземельные магниты?

Это не обычные магниты на холодильник! Неодимовые магниты являются самыми сильными из существующих постоянных магнитов, и даже если вы никогда не слышали о них раньше, вы, вероятно, используете их каждый день. Их иногда называют магнитами NdFeB или Neo, и, несмотря на то, что они такие сильные, они также легкие, поэтому они популярны для самых разных применений. Трудно поверить, но без этого типа редкоземельного магнита многие технологические достижения, произошедшие за последние несколько десятилетий, были бы невозможны!

Насколько сильны неодимовые магниты?

Очень сильный. Они удивят вас! 2-граммовый (0,07 унции) неодимовый магнит диаметром 8 миллиметров (0,315 дюйма) и длиной 5 миллиметров (0,197 дюйма) создает усилие более 1700 граммов (3,75 фунта). Они настолько сильны, что заменили другие типы магнитов во многих приложениях. Например, они более чем в десять раз прочнее керамических магнитов, поэтому вы можете заменить керамический магнит неодимовым магнитом гораздо меньшего размера и создать такое же (или большее!) удерживающее усилие. Осторожно — они также настолько сильны, что даже маленькие неодимовые магниты могут нанести телесные повреждения. Мы даже слышали о более крупных нео, ломающих кости. Обращаться осторожно! Вы можете найти более подробную информацию о удерживающей силе конкретных магнитов в гауссах или фунтах, используя наши инструменты для расчета магнитов.

Из чего сделаны неодимовые магниты?

Неодимовые магниты изготавливаются в основном из сплава неодима, железа и бора. Точный состав может варьироваться в зависимости от необходимой силы и того, для чего используется этот магнит. Существует два основных типа производства неодимовых магнитов: спеченные и связанные.

Спеченные неодимовые магниты изготавливаются путем нагревания компонентов сплава в печи, затем эта смесь отливается в формы и охлаждается с образованием слитков, которые измельчаются в мелкий порошок и прессуются в формы. Формы порошка спекаются, чтобы стать плотными блоками. ( Спекание — это процесс уплотнения и формирования твердой массы материала под действием тепла или давления без его плавления до точки разжижения. ) Материалу нарезают, придавая ему окончательную форму, покрывают или гальванизируют, а затем намагничивают.

Склеенные неодимовые магниты сочетают в себе порошок неодимового сплава с полимерным связующим. Компоненты прессуются или экструдируются для получения более сложных форм и намагничивающих порошков, чем обычно доступны в спеченных магнитах.

Для чего используются неодимовые магниты?

С момента их изобретения в начале 1980-х годов эти сверхсильные магниты нашли применение в самых разных отраслях промышленности. Если вы читаете это на своем компьютере, значит, вы используете неодимовый магнит прямо сейчас! Некоторые приложения включают:

Жесткие диски – Жесткий диск имеет дорожки и сектора, содержащие магнитные ячейки; эти ячейки намагничиваются, когда данные записываются на диск.

Микрофоны, наушники a nd Громкоговорители — Катушки с током используются с постоянными магнитами для преобразования электричества в механическую энергию, которая изменяет давление окружающего воздуха для создания звука.

Зубные протезы – Для надежной фиксации зубных протезов используются крошечные неодимовые магниты. На самом деле, неодимовые магниты используются в нескольких медицинских устройствах. Подробнее о неодимовых магнитах в медицине читайте здесь.

Дверные защелки – В коммерческих и жилых зданиях часто используются двери с неодимовыми магнитными защелками.

Магнитные украшения – Украшения для магнитотерапии часто изготавливаются с неодимовыми магнитами; эти магниты также используются в застежках для браслетов и ожерелий.

Датчики антиблокировочной системы тормозов — Если в вашем автомобиле есть антиблокировочная система тормозов, в ее датчиках используются неодимовые магниты, завернутые в медные катушки.

Где купить неодимовые магниты

Вам нужны неодимовые магниты для вашего бизнеса? Наши промышленные магниты используются в различных отраслях промышленности. Узнайте больше о неодимовых магнитах здесь или свяжитесь с нами, и мы свяжемся с вами — мы с нетерпением ждем начала совместной работы с вами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *