Хепа: принципы работы и неочевидные факты / Хабр

Содержание

принципы работы и неочевидные факты / Хабр

Приветствуем вас в блоге компании Тион Умный микроклимат. Тема статьи — HEPA-фильтры.

Это высокоэффективные фильтры, главная цель которых – удалять из воздуха мелкодисперсные частицы, в том числе PM2.5 и PM10 (с диаметром менее 2,5 и 10 мкм соответственно). HEPA – это не бренд и не марка, а класс фильтров, который определяется международным и национальным стандартами ЕН 1822-1:2009 и ГОСТ Р ЕН 1822-1-2010.

Давайте посмотрим на HEPA-фильтр «с расстояния вытянутой руки», расскажем про принцип его работы и основные эффекты, благодаря которым происходит осаждение частиц на фильтре.


Основа любого HEPA-фильтра – хаотично расположенные волокна разной толщины, примерно 0,5-5 мкм. Расстояние между волокнами – порядка 5-50 мкм. Диаметр мелкодисперсных частиц – в пределах нескольких микрон или даже нескольких долей микрона. Возникает вопрос: как фильтр с такими большими порами задерживает такие мелкие частицы?

Обычно мы представляем фильтр в виде рыболовной сети или сачка: если фильтруемый объект больше ячейки, он застревает. Этот механизм называется эффектом сита (straining). Он работает для частиц, диаметр которых превышает размер пор в фильтре. На упрощенной модели эффект сита выглядит так:

Волокна фильтра представляются в виде цилиндров, расположенных поперек воздушного потока. Сам поток считается безвихревым. Модель частицы – шар с радиусом R. Если 2R больше расстояния между волокнами, частица застревает в фильтре. Чем крупнее частица, тем вероятнее она застревает в волокнах. Поэтому для крупных частиц эффект сита работает лучше:

На графике нет привязки к конкретным размерам, так как фильтры с разной толщиной волокон и разной плотностью упаковки будут задерживать разные фракции частиц. Форма кривой будет примерно той же, но она может «плавать» по горизонтальной шкале. Например, для фильтра грубой очистки класса G кривая будет располагаться правее, чем для фильтра тонкой очистки класса F. В фильтрах HEPA эффект сита тоже наблюдается. И если бы HEPA работал только по этому механизму, то кривая его эффективности выглядела бы примерно так же. Однако на деле она выглядит совсем по-другому:

По графику видно, что HEPA-фильтр задерживает частицы любого размера. И если эффективная фильтрация крупных частиц (около 5 мкм и больше) происходит по механизму сита, то фильтрация мелкодисперсных фракций (порядка 1-0,01 мкм) имеет другую природу.

Как HEPA-фильтр «ловит» мелкодисперсную пыль?


Основное отличие HEPA от фильтров грубой и тонкой очистки в том, что для фильтрации частице не обязательно застревать в волокнах. Если пылинка просто коснулась фильтровального материала, этого уже достаточно для и эффективного осаждения. Это связано с двумя процессами: адгезией и аутогезией.

Адгезия – это взаимодействие пыли с осаждающей поверхностью, в нашем случае с волокнами HEPA. Благодаря адгезии на чистых волокнах появляется первый слой пыли.

Аутогезия, или слипаемость – это взаимодействие пылевых частиц между собой. Благодаря аутогенному взаимодействию частицы продолжают наслаиваться друг на друга, образуя на волокнах многослойные конгломераты. Выглядят они так:

Природа адгезии и аутогезии – в молекулярном взаимодействии частиц друг с другом и с волокнами (силы Ван-дер-Ваальса). Эти силы появляются на расстоянии от одного до нескольких сот диаметров частиц. Для мельчайших частиц притяжение к волокну и пылевому слою настолько большое, что частицы оседают в HEPA-фильтре фактически навсегда. Цифры это подтверждают: для частиц меньше 10 мкм прочность пылевого слоя на разрыв – больше 600 Па.

Итак, из-за сил притяжения частица практически намертво прилипает к волокну HEPA-фильтра, стоит только коснуться его поверхности. Это объясняет удерживание частиц на фильтре, но по-прежнему нет ответа на вопрос:

Как мельчайшие частицы касаются волокна HEPA-фильтра?


Как мы выяснили, эффект сита тут ни при чем – мельчайшие частицы свободно пролетают через поры. В фильтрах НЕРА действуют другие механизмы.

Любая частица удерживается в воздушном потоке, и, если в фильтре не возникают силы, отклоняющие частицу от линии тока воздуха в сторону волокна, то осаждения не будет. В результате частица проскочит через фильтр вместе с потоком. Поэтому вопрос «Как частицы касаются волокна?» можно перефразировать: «Как частицы выходят из воздушного потока?» И ответ на него будет разным, в зависимости от размера и массы частицы.

Самые мелкие частицы (с диаметром меньше 0,1 мкм) обладают небольшой массой и постоянно находятся в хаотичном броуновском движении. Их траектория постоянно колеблется относительно линии тока воздуха. В ходе колебаний частица выходит из потока, касается волокна и осаждается. Это эффект диффузии:

Более крупные частицы (с диаметром больше 0,3 мкм) весят больше, поэтому их колебания относительно линии тока меньше либо отсутствуют вообще. Такие частицы осаждаются по другому механизму. На модели видно, что линии воздушного потока искривляются вблизи волокна, огибая препятствие. Крупные и тяжелые частицы за счет инерции выходят из воздушного потока, сталкиваются с волокном и осаждаются. Это эффект инерции:

Диффузионный и инерционный эффекты дополняют друг друга: один отвечает за фильтрацию самых мелких частиц, другой – более крупных:

Сложнее всего посадить на волокно частицы с «промежуточным» размером. Их инерция еще недостаточно большая, а диффузия уже работает слабо, так как колебания их траектории относительно линии тока уже не такие сильные. Поэтому такие частицы с большей вероятностью остаются в потоке и огибают волокна вместе с воздухом. Их называют частицами с максимальной проникающей способностью, Most Penetrating Particle Size (MPPS). И для их осаждения наибольшее значение имеет последний механизм – эффект зацепления:

Эффект зацепления работает, когда частица приблизилась к поверхности волокна на расстояние своего радиуса. Такого касания достаточно для ее осаждения. Этот механизм работает не только для MPPS. Он универсальный и действует для частиц любого размера. Пылинки могут оставаться в воздушном потоке, совершать диффузионные колебания относительно линии тока или вылетать из потока благодаря инерции – в любом случае, если частица коснулась волокна, она осаждается.

Эффективность этого механизма зависит от размера частицы. Чем больше частица, тем вероятнее она коснется волокна. В этом эффект зацепления похож на эффект сита, потому и график почти одинаковый (естественно, с привязкой в другому диапазону частиц):

В действительности в HEPA-фильтре на частицу одновременно действуют все механизмы, поэтому общая эффективность HEPA-фильтра равняется сумме вкладов каждого эффекта:

ηобщая = ηсита + ηзацепления + ηинерции + ηдиффузии

Если постоянно нагружать HEPA аэрозолем с крупными частицами, то срок работы фильтра значительно сокращается. Это происходит из-за эффекта сита: крупные частицы быстро забивают фильтр и снижают его проницаемость. Чтобы избежать эффекта сита, перед HEPA-фильтром устанавливают один или несколько префильтров более низкого класса: G и/или F. Они защищают HEPA от преждевременного засорения. Если префильтры стоят, то HEPA работает строго «по специальности» — фильтрация мелкодисперсных частиц. Таким образом, остаются три эффекта:

ηобщая = ηзацепления + ηинерции + ηдиффузии

Если сложить все три графика эффективности для каждого механизма, то получим ту самую кривую общей эффективности HEPA-фильтра, которую мы показывали в начале статьи:

Как видим в диапазоне MPPS (примерно от 0,1 до 0,3 мкм) общая эффективность HEPA-фильтра «падает в яму». И именно по MPPS измеряют общую эффективность. HEPA-фильтра класса h20 (по новой номенклатуре E10) работает с эффективностью более 85%, а фильтра класса h21 (E11) – более 95%. Это значит, что в HEPA-фильтре E11 осаждаются 95 из 100 частиц MPPS. При этом остальные частицы осаждаются с вероятностью почти 100%, но итоговую эффективность принято указывать по MPPS, 95%.

От чего зависит эффективность HEPA-фильтра?


Эффективность HEPA зависит не только от размеров фильтруемых частиц, но и от параметров самого фильтра:

  • Диаметр волокон в HEPA-фильтре
  • Плотность упаковки волокон
  • Материал волокон


Чем тоньше волокна и чем плотнее они упакованы, тем больше площадь их соприкосновения с частицами. И чем лучше волокна «цепляют», тем эффективнее осаждение. Если материал, из которого сделан фильтр, обладает высокой удельной проводимостью, то волокна могут заряжаться в воздушном потоке. В этом случае между волокнами и частицами возникают силы электростатического притяжения (силы Кулона). Они дополнительно увеличивают эффективность HEPA-фильтра. Подробнее этот эффект мы здесь рассматривать не будем, про электростатическое осаждение расскажем в другой статье.

При осаждении частиц уменьшается расстояние между волокнами:

В результате площадь волокон увеличивается, и с этим связан парадоксальный факт: со временем эффективность HEPA не уменьшается, а растет. С другой стороны, при загрязнении уменьшается проницаемость фильтра, увеличивается его сопротивление, растет перепад давления на фильтре и, как следствие, уменьшается производительность прибора, в котором тот установлен. Если фильтр забился полностью и производительность прибора упала почти до нуля, единственный выход – заменить фильтр. Частота замены зависит от емкости фильтра. Этот показатель определяет, как много пыли сможет осадить HEPA, прежде чем перепад давления на нем станет критическим.

Теперь, когда мы имеем представление о HEPA-фильтре, соберем по пунктам принцип его работы:

  1. В фильтр попадает воздушный поток с пылинками разного размера, от 10 мкм и меньше
  2. Крупные частицы выходят из воздушного потока благодаря эффекту инерции, мелкие частицы – благодаря эффекту диффузии
  3. На фильтре оседают все частицы, которые вышли из потока и коснулись волокна
  4. На волокне частицы прочно удерживаются благодаря силам притяжения (Ван-дер-Ваальса)


Также соберем в одном месте все неочевидные факты о HEPA-фильтре:

  • HEPA-фильтр может задерживать частицы всех размеров
  • Пыль задерживается в HEPA-фильтре практически навсегда. Пылесосить HEPA бесполезно – только менять.
  • Со временем эффективность HEPA-фильтра только растет.

На этом пока все: мы рассказали про принципы осаждения и удержания мелкодисперсной пыли в HEPA-фильтрах. Если у вас есть вопросы, будем рады ответить на них в комментариях.

Читайте также:
Охота на душный воздух: сколько СО2 в Москве?
Микроклимат против гриппа: как убить вирус с помощью вентиляции и увлажнителя

Фото НЕРА фильтров взяты отсюда и отсюда.

HEPA (ХЕПА) воздушные фильтры для вентиляции от производителя

Скачать каталог с продукцией

Высокоэффективные фильтры очистки воздуха PHAUF®, предназначены для удаления взвешенных частиц в вентиляционных системах чистых помещений класса ISO 1-9 (ГОСТ ИСО 14644-1- 2002), а также применяются в системах приточно-вытяжной вентиляции, для обеспечения специальных требований к чистоте воздуха. Соответствуют самым высоким санитарно-гигиеническим требованиям к чистоте воздуха в помещении.

Используются в таких областях, как фармацевтика, медицина, микроэлектроника, атомная энергетика, пищевая промышленность. Фильтры PHAUF ® производятся по запатентованной технологи «Нулевого выброса»®, включающую в себя: автоматизированную сборку и тестирование на автоматическом скан-тестере AFS 150 (TOPAS, GmbH), с последующей упаковкой в индивидуальную вакуумную упаковку, в чистом помещении класса ISO 7.


У нас Вы можете заказать фильтры очистки воздуха различного исполнения, в соответствии с новейшими международными стандартам

Специализированные HEPA – фильтры для бактерицидных рециркуляторов воздуха PHAUF BREEZE

Подробнее

Фильтры с полиуретановым уплотнителем (серия РНСР)

Подробнее

Фильтры с гелевым уплотнителем (серия РНСР)

Подробнее

О фильтрах абсолютной очистки воздуха HEPA

Плохое качество воздуха внутри помещений негативно влияет на здоровье присутствующих там людей, эффективность протекания ряда технологических процессов, надёжность выпускаемой продукции.

Уровень загрязнения воздуха определяется по количеству взвешенных в нём мелкодисперсных загрязнителей — субстанций живой и неживой природы аэрозольных частиц РМ (Particulate Matter).

Классификация воздушных частиц





ОбозначениеРазмер частиц в диаметреОписание
РМ 10Менее 10 мкм (микрон)Быстро оседают (пыль, дым, сажа, копоть, др. )
РМ 2.5

(FSP)
Менее 2,5 мкмДолгое время удерживаются в воздухе.
Способны проникать через биологические мембраны (тонкодисперсная пыль, табачный и выхлопной дым, соединения тяжёлых металлов,
пыльца, аллергены, грибки, пылевые клещи, микроорганизмы, споры, др.)
РМ 1Менее 1 мкмПостоянно циркулируют в воздухе.
Легко проникают через биологические мембраны (бактерии, вирусы, молекулы газов, токсинов, радиоактивные частицы)

На этапе предварительной очистки подаваемый в помещение воздух очищают от летающих насекомых, шерсти животных, грязи, пыли и «крупных» РМ-частиц размером более 5,0 мкм.

Для этого приточно-вытяжные вентиляционные системы зданий и предприятий оснащаются фильтрами грубой (класс G1-4), средней (класс М5-6) и тонкой (класс F7-9) очистки.

Но в помещениях с повышенными требованиями к условиям микроклимата или с присвоенным классом чистоты нужна дополнительная ультратонкая очистка воздушных масс.

Выполнить эту задачу способны современные фильтры абсолютной очистки воздуха класса НЕРА (High Efficiency Particulate Arrestance — высокоэффективное удерживание частиц).

Улавливая загрязнители РМ2.5 и РМ1 размером менее 0,1 мкм, они практически стерилизуют воздух.

НЕРА фильтры обязательны на завершающем этапе очистки воздуха так называемых «чистых помещений» классов ИСО 1-9 и связанных с ними особых контролируемых зон.

Уровни чистоты воздуха (по содержанию взвешенных в нём частиц) установлены и закреплены межгосударственным стандартом ГОСТ ИСО 14644-1-2002.

Классы очистки и эффективность фильтров HEPA

По своей результативности фильтры семейства НЕРА разделяются на три группы: ЕРА, НЕРА и ULPA.

Их эффективность и класс очистки определяют по числу выброшенных обратно в окружающую среду «самых проникающих частиц» MPPS (Most Penetrating Particle Size) на литр воздуха. Размер «способных проскочить» сквозь ХЕПА фильтр нано-крошек порядка 0,3 мкм и меньше.

Классы очистки НЕРА фильтров










Группа

фильтров

класса НЕРА
Класс

очистки
Эффективность
(интегральное значение, %)
Проскок
частиц

(интегральное значение, %)
ЕРАЕ10≥85≤15
ЕРАЕ11≥95≤5,0
ЕРАЕ12≥99,5≤0,5
НЕРАН13≥99,95≤0,05
НЕРАН14≥99,995≤0,005
ULPAU15≥99,9995≤0,0005
ULPAU16≥99,99995≤0,00005
ULPAU17≥99,999995≤0,000005

Где применяются фильтры высокой и сверхвысокой эффективности

Как говорилось выше, НЕРА фильтры систем вентиляции предназначены для поглощения самых мельчайших загрязнителей из приточного и вытяжного воздуха на финишном этапе его очистки.

Абсолютные фильтры применяют в отраслевых сегментах:

  • Пищевой и химической промышленности
  • Точном машиностроении
  • Аэрокосмической промышленности
  • Фармацевтике
  • Микробиологии
  • Атомной энергетике
  • Микроэлектронике и др.

Они необходимы для стерилизации воздуха в особых зонах медицинских учреждений:

  • Предоперационных и операционных
  • Родильных залах
  • Палатах для новорожденных, недоношенных и травмированных детей
  • Стерильных зонах центральных стерилизационных отделений (ЦСО)
  • Инфекционных стационарах и диспансерах
  • Клинических, биохимических, биологических лабораториях и др.

Ими оснащают высококачественное оборудование для аспирации воздуха рабочей зоны, защиты оператора и окружающей среды, например, вытяжные и ламинарно-потоковые шкафы.

Комплектация многоступенчатых фильтрационно-вентиляционных систем высокоэффективными фильтрами улучшает качество пространства жилых, музейных и прочих помещений с высокими санитарно-гигиеническими требованиями.

Какие фильтрующие материалы используют?

Фильтрующим материалом для вентиляционных НЕРА обычно служит тонкое стеклобумажное полотно.

Структура стеклобумаги представлена беспорядочно расположенными тончайшими стеклопластиковыми волокнами диаметром 0,5–6,5 мкм. Расстояние между ними не выше 40 мкм. Диаметр человеческого волоса, для сравнения, равен примерно 80-120 мкм.

Фильтрующий материал пропитывают антибактериальным средством, чтобы в дальнейшем подавить активность поглощённых им микроорганизмов.

Устройство и конструкция воздушных фильтров HEPA

Производительность вентиляционных очистителей тем выше, чем больше площадь пропускающей поверхности.

Поэтому фильтрующий элемент в ХЕПА фильтре гофрируют — складывают гармошкой.

Чтобы складки гофры сохраняли равномерность, не слипались и не ограничивали воздушный поток, их разделяют сепаратором из алюминиевой фольги или синтетических нитей.

Складчатый фильтрпакет заключают в жёсткую раму усиленной конструкции.

Рама, в зависимости от условий применения, может быть из алюминиевого сплава, нержавеющей или оцинкованной стали, шлифованного МДФ.

Надёжность и герметичность крепления фильтрпакета к периметру рамы обеспечивается специальным полиуретановым клеем.

Каждую единицу готовой продукции тестируют на стенде.

Компьютеризированный сканер проверяет целостность изделия, эффективность фильтрующего материала.

С одной или обеих сторон по наружному периметру корпуса фильтра наносят гелевый или вспененный уплотнитель. Он обеспечивает герметичное прилегание фильтра к элементам вентиляционной системы при монтаже устройства.

Принцип работы фильтров абсолютной очистки воздуха – основные механизмы

Думать, что абсолютный фильтр «выцеживает» микрочастицы из воздушного потока словно «чайное ситечко» — большая ошибка.

Ведь расстояние между случайно расположенными волокнами фильтрующего материала значительно больше размера улавливаемых им РМ2.5 и тем более РМ1 загрязнителей.

Разумеется, эффект сита присущ и абсолютному фильтру. Но «ловля» крупных частиц приводит его к быстрому загрязнению и выходу из строя.

Поэтому использовать ультратонкое устройство в режиме «грубого сита» вредно и нецелесообразно.

Принцип работы высокоэффективного НЕРА фильтра основан на адгезии.

Что такое адгезия?

Адгезия или прилипание (adhaesio) – это физическое явление «склеивания» поверхностей разнородных или однородных (в случае аутоадгезии) жидких или твёрдых тел.

Эффект адгезии обусловлен силами межмолекулярного и межатомного взаимодействия (Ван-дер-ваальсовыми силами).

Для микрочастиц прочность адгезивного прилипания на разрыв превышает 600 Паскаль.

Чтобы «прилипнуть намертво» к фильтрующему волокну микрочастица должна лишь коснуться его поверхности или значительно к нему приблизиться.

Объясним, как происходит такое сближение.

Механизмы улавливания микрочастиц волокнами абсолютного фильтра:

  • Инерция
  • Зацепление
  • Диффузия

Инерция

Эффект инерции справедлив для относительно «больших» и «тяжёлых» загрязнителей размером более 0,3 мкм.

«Влетая» в толщу фильтрующего материала, струи воздушного потока легко огибают возникшие на пути фильтровальные волокна.

Входя с потоками в фильтровальный лист «крупные» частицы в силу своего «веса» не успевают «вовремя свернуть». Двигаясь по прежней траектории, они «врезаются» в волокна и прочно к ним прилипают.

Зацепление

Эффект перехватывания (interception) или зацепления универсален и «работает» для загрязнителей любого размера.

Ведь двигаясь в потоке воздуха сквозь множества хаотично переплетённых фильтрующих волокон та или иная частица обязательно, хоть и случайно, приблизится и, согласно адгезии, «притянется» к одному из них.

Диффузия

Эффект диффузии справедлив для ультра-мелких загрязнителей размером меньше 0,1 мкм.

Двигаясь в «тесной толпе» с молекулами газов воздуха (О2, СО2, N2 и др.), они сталкиваются с последними, отлетают, раскачиваются и отклоняются от траектории «полёта», заданной воздушным потоком.

Движение таких микрочастиц становится беспорядочным и напоминает Броуновское. Хаотично «болтаясь» в толщи НЕРА-ловушки, немудрено рано или поздно «наткнуться» на фильтрующее волокно — нечаянно, или в силу инерции.

В случае диффузии все перечисленные выше эффекты улавливания частиц работают одновременно.

Очевидно, что при движении микрообъектов сквозь «густой лес» волокон абсолютного фильтра суммарная вероятность их улавливания, а значит эффективность фильтра, приближается к 100%.

Преимущества фильтров HEPA

  1. При верной эксплуатации эффективность ХЕПА фильтра со временем только возрастает. Ведь по мере налипания микрочастиц к волокну, структура стеклобумаги уплотняется. А значит повышается число перехватов микро-загрязнителей
  2. Изделие производится из влагостойких и трудновоспламеняемых материалов (класс пожаробезопасности F1)
  3. Прост в монтаже и применении
  4. Сохраняет заявленную эффективность даже в сложных условиях эксплуатации
  5. Компактная конструкция, небольшой вес
  6. Доступная цена

Разница между фильтрами ULPA и HEPA

Конструктивной разницы между фильтрами высокой НЕРА и сверхвысокой ULPA эффективности нет.

Ультравысокий класс очистки ULPA достигается повышением функциональных свойств волокнистого материала, усовершенствование его химических и микроскопических характеристик:

  • Более тонкие и «цепляющие» фильтрующие волокна
  • Более плотная укладка волокон (за счёт снижения размеров диаметра)
  • Модернизация состава волокна
  • Усовершенствование технологических процессов производства стекловолокна и т.п.

Способы монтажа и тонкости эксплуатации

Перед вводом в эксплуатацию ХЕПА фильтр помещают в специальный фильтр-бокс. Монтаж
фильтра проводит квалифицированный специалист строго в соответствии с установленными гигиеническими требованиями.

НЕРА-боксы выпускаются в разнообразном исполнении, из различных материалов, например, из оцинкованной стали.

В каждом боксе есть порт замера перепада давления на фильтре и устройство регулировки воздушной заслонки, установленной на входе воздухоприемника.

Прижимные механизмы и алюминиевый профиль конструкции обеспечивают 100-процентную герметичность установки фильтра в элемент фильтр-бокса.

Важно помнить, что воздух, подающийся на высокоэффективный фильтр, должен пройти предварительную очистку. В противном случае НЕРА быстро «забьётся» грязью и выйдет из строя.

Поэтому, решив купить НЕРА-фильтр для вентиляции, нужно оснастить приточно-вытяжную систему каскадом устройств грубой и тонкой очистки воздуха.

Срок эффективной работы абсолютного фильтра зависит от условий его эксплуатации и функциональных характеристик фильтрующего материала, но не превышает 12 месяцев.

Отработанную кассету абсолютного вентиляционного фильтра нельзя прочистить или промыть – она одноразовая. «Забитый» hepa-воздухоочиститель следует заменять новым.

От чего зависит стоимость заказа фильтра HEPA / ULPA?

Исполнение абсолютных фильтров может быть стандартным или по индивидуальному заказу.

Конечная стоимость изделия зависит от класса очистки, формы и габаритов кассеты (фильтра), характеристик фильтрующего полотна, материала профиля рамы, типа сепаратора, вида уплотнителя, а также от индивидуальных требований и предпочтений заказчика.

Воздушные фильтры класса НЕРА торговой марки PHAUF компании ООО «НПП «МИКРОСИСТЕМА»
производят финишную высокоэффективную очистку воздуха помещений в соответствии с нормативами ИСО.

Наша продукция отвечает строгим требованиям международного стандарта ЕН 1822-1:2009 и национального стандарта РФ ГОСТ Р ЕН 1822-1-2010.

Наша продукция

EPA/HEPA/ULPA фильтры


W-образные фильтры (серия FCW)

    Карманные фильтры (серия PF)

      Кассетные фильтры (серия FKT)

        Панельные фильтры (серия FPT)

          Фильтрующие материалы


          Что такое фильтр HEPA? Как это работает?

          СТАТЬИ В БЛОГЕ

          Подумайте о длинном списке важных терминов, модных словечек и аббревиатур в вашей жизни, которые вы еще не совсем усвоили: застрахованные FDIC, Big Data, Organic, и это лишь некоторые из них. Если вы когда-либо покупали очиститель воздуха или пылесос, вы, вероятно, можете добавить «HEPA» в этот список.

          Что означает название фильтра «HEPA» и почему это важно? Мы будем рады объяснить:

          Что означает HEPA? Откуда это?
          HEPA (высокоэффективный взвешенный воздух) — это обозначение, используемое для описания фильтров, способных улавливать 99,97% частиц размером 0,3 микрона. Хотя стандарт HEPA и процесс сертификации не были установлены до 1983 года, разработка фильтров HEPA восходит к Второй мировой войне, когда американские ученые в Манхэттенском проекте создали первый фильтр HEPA для улавливания радиоактивных частиц, выпущенных при создании атомной бомбы.

          Почему 0,3 мкм?
          Этот микронный размер (0,3) ученые называют MPPS или наиболее проникающим размером частиц. Ученые обнаружили, что частицы такого размера ускользают от воздушных фильтров лучше, чем частицы большего или меньшего размера. Мы немного разберемся, почему.

          Как работают НЕРА-фильтры? Из чего они сделаны?
          Большинство современных фильтров HEPA состоят из переплетенных стеклянных волокон, которые скручены и повернуты в бесчисленных направлениях, образуя волокнистый лабиринт. Когда частицы пересекают эту паутину, они выводятся из обращения следующими способами:

            Прямое воздействие: Крупные загрязнители, такие как определенные виды пыли, плесени и пыльцы, перемещаются по прямому пути, сталкиваются с волокном и прилипают к нему.

          Просеивание: Воздушный поток переносит частицу между двумя волокнами, но частица крупнее зазора, поэтому она попадает в ловушку.
          Перехват: Воздушный поток достаточно проворен, чтобы перенаправляться вокруг волокон, но благодаря инерции частицы продолжают свой путь и прилипают к сторонам волокон.
          Диффузия: Маленькие сверхмелкие частицы движутся более хаотично, чем более крупные, поэтому они с большей вероятностью ударяются о волокна и прилипают к ним.

          Что происходит, когда частицы проникают через фильтр HEPA? Они попадают прямо в мои легкие?
          Не волнуйтесь. Существуют и другие технологии, которые работают вместе с фильтрами HEPA для защиты от многих сверхмалых загрязняющих веществ, таких как дым, пары и другие химические вещества. Фильтры с активированным углем, такие как, например, фильтры Airmega Max2, используют маленькие поры для улавливания некоторых химических веществ, запахов и дыма, которые фильтр HEPA может не улавливать.

          Я постоянно слышу термин «Настоящий HEPA». Существуют ли различные формы HEPA?
          Маркетологи используют довольно много терминов для описания воздушных фильтров. Хотя технически True HEPA является маркетинговым термином, многие используют его для различия между американскими и европейскими стандартами HEPA. В Европе фильтр должен улавливать только 85 процентов частиц размером 0,3 микрона — по сравнению со стандартом США — 99,97 процента, чтобы получить сертификат HEPA. Таким образом, американский стандарт часто называют «True HEPA». «Тип HEPA», «Ultra HEPA» и другие варианты HEPA не признаются органами по аккредитации в США или Европе.

          Что, если фильтр рекламирует себя как способный улавливать 99,9 % мелких или крупных частиц — это хорошо, верно?
          Не обязательно. Фильтр, который заявляет, что может задерживать 99,9% крупных частиц, может плохо улавливать сверхмелкие частицы. Точно так же фильтр, который рекламирует свою способность улавливать мельчайшие частицы, не говорит вам, насколько хорошо он улавливает частицы размером 0,3 микрона, которые, как мы знаем, являются наиболее проблемными.

          Где используются НЕРА-фильтры?
          Как и в Манхэттенском проекте, фильтры HEPA изначально предназначались для использования в лабораториях и на заводах. Сегодня они также проникли в потребительские товары, включая автомобили, пылесосы и, как вы уже догадались, очистители воздуха.

          Узнайте больше о том, как Airmega меняет то, как мы дышим, и будьте в курсе последних новостей, подписавшись на нашу рассылку.

          Новостная рассылка

          Чтобы быть в курсе специальных акций и запусков новых продуктов, подпишитесь на нашу рассылку. Мы никогда не будем спамить вас или передавать вашу информацию третьим лицам.

          Регистрируясь, вы соглашаетесь с нашими

          Условия использования и продажи и наша Политика конфиденциальности.

          Используйте стрелки влево/вправо для перемещения по слайд-шоу или проведите пальцем влево/вправо при использовании мобильного устройства

          Что такое фильтр HEPA и как он работает?

          Фильтрация HEPAОбразование

          Автор Кевин Альберс

          Что такое фильтр HEPA?

          Высокоэффективный воздушный фильтр для твердых частиц (HEPA) может удалять 99,97% — 99,99% взвешенных в воздухе частиц, размер которых равен, меньше или больше 0,3 микрона (EPA). Эффективность оценивается на основе наихудшего возможного уровня, поэтому думайте об этом как о 99,97% или ЛУЧШЕ.

          Фильтры HEPA тестируются с использованием частиц воздуха размером 0,3 микрона, так как фильтру HEPA труднее всего их уловить. Фильтры HEPA на самом деле более эффективны при улавливании частиц меньшего размера, таких как частицы размером с вирусы (которые в среднем составляют 0,1 микрона), из-за того, как ведут себя эти частицы меньшего размера (см. исследование НАСА). Это основано на оценках MERV (минимальные отчетные значения эффективности), установленных Американским обществом инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE).

          Как работает фильтр HEPA?

          Фильтр HEPA отличается от обычного воздушного фильтра, который вы обычно ставите дома. Фильтры HEPA представляют собой гофрированные механические воздушные фильтры, которые имеют значительную толщину для улавливания твердых частиц. Складки создают коврик из волокон, которые расположены случайным образом. Случайное плотное расположение волокон в фильтре HEPA помогает улавливать частицы разного размера. Когда частицы воздуха проходят через воздушный фильтр, они улавливаются тремя механизмами: диффузией, перехватом и столкновением.

          Диффузия происходит в НЕРА-фильтре, когда молекулы газа размером менее 0,1 микрона сталкиваются друг с другом и задерживаются при прохождении через фильтр. Задержка сделает более вероятными следующие два механизма для этих более мелких частиц. Перехват – это когда движущиеся по воздуху частицы прилипают к волокну. Удар, третий механизм, заключается в том, что более крупные частицы воздуха внедряются непосредственно в сами волокна.

          В попытке продлить срок службы НЕРА-фильтра в комплект можно включить предварительный фильтр, который помогает удалять более крупные частицы, оставляя более мелкие частицы для улавливания НЕРА-фильтром. Мы в ISO-Aire знаем об этом, и все наши коммерческие очистители воздуха, которые мы предлагаем, поставляются с предварительными фильтрами MERV-8 для продления срока службы фильтра HEPA.

          Что предлагают очистители воздуха ISO-Aire HEPA?

          Смотреть: Что такое HEPA-фильтр и насколько он эффективен?

          Все модели ISO-Aire оснащены фильтром HEPA, а также двумя дополнительными технологиями очистки воздуха, включая биполярную ионизацию без озона и бактерицидное УФ-излучение.

          Смотреть: Как фильтр HEPA работает с моей существующей системой HVAC?

           Заинтересованы в инвестициях в фильтрацию HEPA? В ISO-Aire мы предлагаем портативные очистители воздуха HEPA, не требующие особого ухода, которые обеспечивают уровень защиты медицинского уровня. Наши очистители воздуха оснащены не только 9Фильтр HEPA с эффективностью 9,99% и сроком службы 5-6 лет. Их также можно заказать с безозоновой биполярной ионизацией, сертифицированной по UL 2998, и/или со стерилизацией УФ-излучением. Хотите узнать, какой очиститель воздуха лучше всего подходит для вашего помещения? Свяжитесь с нашей командой экспертов сегодня, и мы поможем вам выбрать наиболее подходящую комбинацию модели и технологии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *